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ABSTRACT 

Purpose: In this work, we present a novel MRI reconstruction method to improve the quality of MR images in 

the presence of respiratory motion for real-time thoracic image-guided radiotherapy.  15 

Methods: This new reconstruction method is called Dynamic Keyhole and utilizes a library of previously 

acquired, peripheral k-space datasets from the same (or similar) respiratory state in conjunction with central k-

space datasets acquired in real-time. Internal or external respiratory signals are utilized to sort, match, and 

combine the two separate peripheral and central k-space datasets with respect to respiratory displacement, 

thereby reducing acquisition time and improving image quality without respiratory-related artifacts. In this 20 

study, the dynamic keyhole, conventional keyhole, and zero-filling methods were compared to full k-space 

acquisition (ground truth) for sixty coronal datasets acquired from 15 healthy human subjects.  

Results: For the same image-quality difference from the ground-truth image, the dynamic keyhole method 

reused 79% of the prior peripheral phase-encoding lines, while the conventional keyhole reused 73% and zero-

filling 63% (p-value < 0.0001), corresponding to faster acquisition speed of dynamic keyhole for real-time 25 

imaging applications.  

Conclusions: This study demonstrates that the dynamic keyhole method is a promising technique for clinical 

applications such as image-guided radiotherapy requiring real-time MR monitoring of the thoracic region. Based 
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on the results from this study, the dynamic keyhole method could increase the temporal resolution by a factor of 

five compared with full k-space methods. 30 

Keywords: real-time imaging; thoracic imaging; motion artifacts; respiratory motion; radiotherapy guidance 

 

I. INTRODUCTION 

There are a number of medical applications in interventional radiology and cancer radiotherapy that require real-

time patient images to continuously monitor the region of interest for therapeutic guidance.1-4 Magnetic 35 

resonance imaging (MRI) is an ideal candidate for these applications; it has excellent soft-tissue contrast, does 

not expose subjects to ionizing radiation,5 and is capable of both anatomical and functional imaging. Recently, 

radiotherapy systems integrated with MRI have been proposed by Kolling (2013),6 Viewray Inc. (2011),7 

Raaymakers (2009),8 and Fallone (2009).9 

In order to be utilized for real-time imaging,10-12 a technique offering both fast and quasi-continuous image 40 

acquisition and reconstruction is required for MR image guidance. However, thoracic imaging in conventional 

MRI often suffers from motion artifacts13 and long scan times, which are not suitable for image-guided 

therapeutic procedures. Hence, there is a need for methods that can reduce scan times without inducing 

respiratory-related artifacts in the images of the thoracic region. 

One method to speed up MR image acquisition is to exploit the basic structure of the raw datasets (digitized 45 

MRI signals) in k-space (Fourier transform of the MR image). Central (low-frequency) k-space datasets contain 

the majority of the image information, while peripheral (high-frequency) k-space datasets are associated with 

fine image details, such as edge definition and image sharpness. In applications requiring real-time imaging, 

undersampling k-space datasets directly corresponds to a reduction in imaging time.14  

Conventionally, the unmeasured datasets are simply filled with zeros in a technique called zero-filling,15 but 50 

this results in image blurring, low image resolution and contrast. An improvement to zero-filling is the 

conventional keyhole technique.14, 16, 17 In this case, the missing data are filled with a previously measured single 

peripheral k-space dataset. The conventional keyhole method allows continuous motion to be monitored with an 

acceptable level of image quality in cases where motion is negligible. But, in cases in which the range of motion 

is large, there will be a mismatch between the previously obtained peripheral dataset and the central k-space 55 

datasets. This mismatch can result in significant image artifacts, particularly in large field of view (FOV) 

imaging due to longer acquisition times. 
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Other undersampling techniques to reduce both acquisition time and motion sensitivity are circular,18 

radial19, and spiral20 undersampling. In these approaches, unmeasured points can still cause artifacts due to zero-

filling, interpolation, and oversampling in duplicated data.21, 22 The large FOV in thoracic imaging limits these 60 

undersampling schemes due to the out-of-field object size exceeding the diameter of FOV.18 The speed of 

acquisition can be accelerated using compressed sensing23 in some applications. However, this requires 

computationally-intensive iterative reconstruction24, leading to a delay between image acquisition and 

reconstruction which is a barrier to real-time applications. This limits the applicability of these undersampling 

techniques in the thoracic region, in which respiration can cause significant organ motion and a large field of 65 

view is often required.25-28 As yet, an effective technique for real-time imaging in these regions has not been 

proposed. 

In this study, we introduced a new reconstruction method called Dynamic Keyhole, which utilizes a library 

of previously acquired prior peripheral k-space datasets for the same (or similar) respiratory state in conjunction 

with the central k-space datasets. In this method, real-time internal or external respiratory signals were utilized 70 

to sort, match, and combine the two separate peripheral and central k-space datasets with respect to respiratory 

displacement. In addition, we demonstrated that the dynamic keyhole method can reduce MR image acquisition 

time, as well as improve image quality in the presence of respiratory motion in the thoracic region. Image 

reconstruction performance was compared using sixty MRI datasets from fifteen healthy human subjects. The 

dynamic keyhole method was compared with the conventional methods: zero-filling and conventional keyhole.  75 

 

II. METHODS 

The following sections describe the processes of the dynamic keyhole method, its implementation, and a 

retrospective simulation to test its efficiency compared to the zero-filling and conventional keyhole methods. 

 80 

II.A. Dynamic Keyhole Method 

The dynamic keyhole method is an extension of the conventional keyhole method.14 Instead of using a single 

prior peripheral k-space dataset, the dynamic keyhole method uses a library of prior peripheral k-space datasets, 

each corresponding to a different respiratory displacement. Hence, rather than matching a prior peripheral k-

space dataset of a particular respiratory displacement to every central k-space dataset across a range of 85 

respiratory displacements, the dynamic keyhole method selects and closely matches peripheral k-space datasets 

from the library, with the central k-space datasets taken in real time and combined with the prior k-space 
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datasets by respiratory displacement matching. A comparison between the dynamic keyhole method and the 

conventional keyhole method is shown in Figure 1. 

 90 

Figure 1. The dynamic keyhole method (A) compared to the conventional keyhole method (B). The 

conventional keyhole method uses a single prior peripheral k-space dataset while the dynamic keyhole method 

uses a library of multiple prior peripheral k-space datasets across a range of respiratory displacements.  
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The dynamic keyhole method is composed of two processes: (1) Acquiring a library of prior peripheral k-95 

space datasets; (2) Acquiring real-time central k-space datasets. Respiratory signals are utilized to improve a 

match of the library of prior peripheral k-space datasets with central k-space datasets, resulting in fast MR 

imaging by undersampling k-space, while minimizing respiratory-related artifacts. Each of these steps is 

explained in detail below. 

 100 

II.B. Prior peripheral k-space dataset (library) acquisition 

In this retrospective study using existing datasets, five respiratory cycles of about twenty seconds were initially 

used, based on clinical MRI respiratory-gating practice,29 to build the library of prior peripheral k-space 

datasets, using the following steps: 

1. In Figure 1(1), respiratory signals were continuously acquired. Full k-space datasets were synchronized 105 

with the respiratory signal, beginning at peak inhalation and ending after five respiratory cycles. The 

synchronized respiratory signals and full k-space datasets can be expressed as           , where d is 

respiratory displacement, n is the nth full k-space dataset and N is the number of full k-space phase 

encoding lines (N = 256). 

2. At the end of the five respiratory cycles,    (     ) was sorted with respect to unique respiratory 110 

displacements            , where m is the mth position of the respiratory displacement from the peak 

inhalation with a millimeter bin width, and reconstructed using a 2D Fourier 

Transform,   (           ). A tolerance  , which represents a fraction   of average image intensity 

              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  determined on a pixel-by-pixel basis, was chosen and used as a measure of image 

quality. The tolerance   can be expressed as 115 

Tolerance (T) =               ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                          (1) 

In this study, we used  =0.1 (10%) of              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for the tolerance, which corresponds to the 

typical image quality achievable by conventional keyhole method. Then, the number of prior peripheral 

k-space phase-encoding lines,  , was determined within T in Figure 1(2). 

3. In Figure 1(3), the library of prior peripheral k-space datasets,             acquired at the same 120 

respiratory displacements from d1 to dm, was reconstructed using       lines (           ). 

Each reconstructed image was compared with the image reconstructed using 256 lines, and   was 

increased until the difference between the two images exceeded T. If there were more than two k-space 
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datasets with the same respiratory displacement, the process was repeated and the average value of   

was used to form the library. 125 

 

For the zero-filling and conventional keyhole reconstructions, the k lines of N with zeros (zero-filling) or a 

single dataset taken in the mid-exhalation phase (conventional keyhole) was determined using a similar process 

as described in the three steps above. The k lines of zeros (zero-filling) or the k lines of a single dataset 

(conventional keyhole) were increased until the difference of the two images exceeded T. 130 

 

II.C. Real-time central k-space dataset acquisition 

The real-time central k-space dataset acquisition began after the library acquisition. In this instance, the size of 

the central k-space datasets (     lines) was determined through matching respiratory displacement between a 

present respiratory signal and the matched dataset of the library, shown in Figure 1(4). Then, the (     lines) 135 

of central k-space dataset were combined with the   lines of the matched dataset in Figure 1(5). 

 

II.D. Testing the dynamic keyhole method 

In order to investigate the efficacy of the dynamic keyhole method compared to the zero-filling and 

conventional keyhole methods, the three methods were implemented in Matlab version 7.13 (The MathWorks, 140 

Natick, USA) and tested retrospectively using respiratory and MR image datasets acquired in a previous study.30 

Sixty MRI datasets with associated respiratory motion datasets were acquired from fifteen healthy human 

subjects in the supine position using a 3T GE MR scanner (GE Healthcare, Waukesha, USA). Each subject had 

a total of four MRI scans over two separate imaging sessions. Each dataset consisted of 512 images in the 2D 

coronal plane acquired approximately every 200 ms using fast gradient recalled echo (fGRE) pulse sequence 145 

with a field of view (FOV) of 480 × 384 mm2 and a 96 × 96 matrix size per frame across more than twenty 

respiratory cycles. Each MR image was interpolated to a 256 × 256 matrix by the MR scanner. Internal 

respiratory signals (5Hz) were obtained from each MR image at the peak of the right diaphragm of the dome of 

the liver. The Real-time Position Management (RPM) system (Varian Medical Systems, Palo Alto, USA) was 

used to monitor the subjects’ abdominal respiratory motion to obtain external respiratory signals (30Hz). 150 

Overall, for these datasets, the correlation of internal and external signals was found to be very high in a 

previous study, an average Pearson’s R-value of 0.96.31 The 30 Hz external signal was downsampled to the 

temporal resolution of 5 Hz for (1) the use of respiratory displacements at the closest acquisition time between 
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respiratory signals and full k-space datasets in Figure 1(3), and (2) the use of the sixty datasets acquired at 5 Hz 

temporal resolution during the acquisition of central k-space datasets in Figure 1(4). 155 

The dynamic keyhole method was compared with the zero-filling and conventional keyhole methods in two 

ways: firstly, by evaluating the acquisition speed for the same image quality and secondly, by evaluating the 

image quality at the same acquisition speed14. For the first comparison, the acquisition speeds of the methods 

were quantified by using the number of k lines reused by each method to achieve the same image quality. For 

the second comparison, the quality of the images reconstructed from the same number of k lines was compared 160 

with the quality of the original ground-truth image reconstructed from the full k-space datasets by using the 

differences in image intensity. 

The impact of the use of internal or external respiratory signals was also investigated. The number of k lines 

required to achieve the same image quality was quantified for both respiratory signals for each of the three 

methods. Quantitative statistical comparison of the performance was determined using the mean, standard 165 

deviation, and paired Student’s t-test (Excel 2010, Microsoft, Redmond, USA).  

 

 

III. RESULTS 

The correlation between faster image acquisition and better image quality for the zero-filling, conventional 170 

keyhole, and dynamic keyhole methods is shown in Figure 2. 
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Figure 2. The relationship between faster image acquisition (horizontal arrow) and better image quality (vertical 

arrow) for each of the three methods tested.  

 175 

The intersections of each of the curves with the tolerance, which is 10% of average image intensity (thin, 

horizontal black line), indicate the number of k lines that were reused for each method. The image intensity 

difference increased when the number of k lines was increased in all three methods, but was smallest in the 

dynamic keyhole method. This showed that the dynamic keyhole method can reuse more k lines for the same 

image quality, resulting in faster image acquisition. 180 

Figure 3 shows reconstructed images using the different number of k lines required to produce the same 

image quality compared to original ground truth image. 
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Figure 3. Reconstructed images using the different number of k lines required to produce the same image 

quality compared to original ground truth image: (a) original image (k = 0 lines), (b) zero-filling reconstructed 185 

image (k = 152 lines with zeros), (c) conventional keyhole reconstructed image (k = 170 lines) and (d) dynamic 

keyhole reconstructed image (k = 196 lines). 

 

The zero-filling method in Figure 3(b) reused 152 lines with zeros, the conventional keyhole method in Figure 

3(c) reused 170 lines, and the dynamic keyhole method in Figure 3(d) reused 196 lines. Compared to the other 190 

two methods, the dynamic keyhole method reused more k lines to reconstruct the same image quality, indicating 

a faster image acquisition time. 

The performance of the three methods regarding the improvement of image quality was also evaluated. To 

provide a comparison of the image quality, an example of reconstructed images with 204 of 256 lines for a 

library across all the methods is shown in Figure 4.  195 

 

Figure 4. Reconstructed MR images utilizing (b) zero-filling, (c) conventional keyhole and (d) dynamic 

keyhole, where 204 of 256 lines were reused. (e), (f) and (g) display the difference between the original image 

(a) and the reconstructed images for the zero-filling (27%), conventional keyhole (11%), and dynamic keyhole 

(9%) methods, respectively. 200 

 

From the reconstructed images shown in Figure 4, it is evident that the image quality of the dynamic 

keyhole method was superior to the zero-filling and conventional keyhole methods when 204 of 256 lines were 

reused. The reconstructed images using the zero-filling method in Figure 4(b) contained considerable blurring 
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image artifacts. The conventional keyhole image in Figure 4(c) produced better image quality than the zero-205 

filling method, but still contained motion artifacts around regions affected by respiratory motion such as the 

diaphragm, kidneys, and liver. However, respiratory-related artifacts were minimized on the reconstructed 

image by the dynamic keyhole method in Figure 4(d). 

The average number of k lines from the sixty datasets across the three methods using internal or external 

respiratory signals is shown in Table 1.  210 

 

Table 1. Zero-filling, conventional keyhole and dynamic keyhole results of the mean and standard deviation 

(STD) of the number of k lines to achieve the same image quality difference compared with the original images 

for the sixty obtained datasets. 

Methods Mean ± STD of k lines 

Zero-filling 162 (63%) ± 8 

Conventional keyhole 188 (73%) ± 14 

Dynamic keyhole (internal respiratory signal) 204 (79%) ± 17 

Dynamic keyhole (external respiratory signal) 202 (78%) ± 17 

 215 

Across the sixty datasets, the dynamic keyhole method using the internal respiratory signals reused an 

average of 204±17 of 256 (79%) lines compared to 162±8 of 256 (63%) lines in the zero-filling method and 

188±14 of 256 (73%) lines in the conventional keyhole method to achieve the same difference from the ground 

truth image. The difference in the number of k lines between the dynamic keyhole method and the zero-filling or 

conventional keyhole method were statistically significant with a p-value < 0.0001 in both cases.  There was a 220 

two-line difference in the average of k lines between the internal and external respiratory signals in the dynamic 

keyhole method (p-value < 0.0001). However, there was only a 1% difference, indicating that either internal or 

external respiratory signals are suitable for the dynamic keyhole method. The dynamic keyhole method required 

less scan time compared to the conventional keyhole method to achieve the same image quality during real-time 

central k-space dataset acquisition. For example, once the library of the prior peripheral k-space datasets were 225 

acquired, the real-time central k-space dataset acquisition of the dynamic keyhole method achieved image 

acquisition speeds of about 40 ms (52 of 256 lines) per image compared to about 53 ms (68 of 256 lines) per 

image for the conventional keyhole.  
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The performance of the dynamic keyhole method using the different input signals over the intra- and inter-230 

subject variations is shown in Figure 5. For the intra- and inter-subject variations, sixty datasets were grouped 

by respiratory signal and subject.  

 

Figure 5. The number of k lines (of 256) for the dynamic keyhole method to achieve a 10% difference with the 

original image using the internal (red) and external (black) respiratory signals over the sixty obtained datasets of 235 

15 subjects (two datasets, each with internal and external respiratory signals, over two imaging sessions). The 

subject dataset numbers are labeled by subject-imaging session, e.g. 5-2 is subject 5, session 2.  

 

The internal respiratory signals compared to the external respiratory signal were similar in all of the sixty 

datasets. The largest difference was observed in subject 3, session 1, where eight more k lines were reused using 240 

the internal respiratory signals than the external signal. A larger difference in k lines was found when there were 

regular internal and relatively irregular external respiratory cycles, for example the datasets in subject 3, session 

1 and subject 9, session 2. The   lines were lower with the internal respiratory signals in only one case, subject 

2, session 1, due to irregular internal and relatively regular external respiratory signals. 

The average of maximum-to-minimum range of intra-subject variation using internal (or external) 245 

respiratory signals and the standard deviation of   lines was 12±11 lines (or 12±10 lines). The average of 

maximum-to-minimum range of inter-subject variation across fifteen subjects and the standard deviation of   

lines was 47±15 lines (or 49±16 lines). 
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IV. DISCUSSION 250 

Real-time thoracic imaging often requires a large FOV and includes respiratory motion, leading to longer 

acquisition time and respiratory-related artifacts due to organ displacement. In this study, we introduced the 

dynamic keyhole method, which utilizes a library of prior peripheral k-space datasets corresponding to multiple 

respiratory states that are matched to real-time central k-space datasets using internal or external respiratory 

information. Using the dynamic keyhole method, we demonstrated fast image acquisition while maintaining 255 

image quality.  

We demonstrated that the dynamic keyhole method resulted in a significant reduction in the amount of 

central k-space datasets necessary to acquire an image of sufficient quality. For the same amount of central k-

space datasets, the dynamic keyhole method resulted in improved image quality compared to the zero-filling and 

conventional keyhole methods, as shown in Figures 3 and 4. The dynamic keyhole method reused 79% of prior 260 

peripheral k-space datasets to reconstruct artifact-free images, 6% more than conventional keyhole, and 16% 

more than zero-filling. As a result, the number of phase encoding lines was reduced by up to 79% from the full 

k-space acquisition during the central k-space dataset acquisition. This shows that the dynamic keyhole could be 

a valuable tool for fast MR image acquisition, which is required for real-time thoracic imaging in the presence 

of respiratory motion. In addition, the acquisition of full k-space datasets may not be necessary during library 265 

acquisition (Figure 1(A)(1)) when the same number of peripheral phase encoding lines is used. The scan time 

could be further reduced in this stage of the dynamic keyhole method if the k-space is not fully acquired. 

To accelerate image acquisition time, compressed sensing23, 24 and parallel imaging32, 33 have been proposed 

for improving both acquisition time and quality of MR images. However, the delay between image acquisition 

and reconstruction in compressed sensing, due to the iterative reconstruction, and the sensitivity of multi-270 

receiver coils in parallel imaging lead to residual aliasing and noise enhancement artifacts.21 The barrier to real-

time thoracic or abdominal imaging in compressed sensing could be, however, improved using the dynamic 

keyhole method. In compressed sensing, superior image quality of images reconstructed by the dynamic keyhole 

method could reduce iterations. Furthermore, the dynamic keyhole method can be combined with other 

undersampling methods, such as circular18, radial19, and spiral20 to improve undersampling schemes for the out-275 

of-field object size exceeding the diameter of FOV.18  

In the current retrospective study, the internal respiratory signal measured directly from obtained images 

(manual process) was utilized.30 This resulted in slightly better dynamic keyhole performance than the external 

respiratory signal in terms of k-line reduction. For prospective implementation, an automatically determined 
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diaphragm position3, 25, 34 is necessary instead of the manual process utilized here, but it requires additional 280 

internal respiratory signal measurements whilst k-space datasets are measured and images reconstructed. 

Alternatively, the external respiratory signals can be easily utilized with only a small penalty in terms of k-line 

reduction, as there is a high internal-external signal correlation for the dataset used in this study (Pearson’s R-

value = 0.96).31 

The dynamic keyhole method uses previously acquired full k-space datasets, and in an actual 285 

implementation, the library of k-space datasets for the prior peripheral k-space dataset and the central k-space 

dataset acquisition would be at a different frequency. Even though the library may be acquired at a lower 

temporal resolution, the dynamic keyhole method should give improved results over the conventional keyhole 

method because it utilizes multiple prior peripheral datasets matched to various respiratory displacements. In an 

additional study (data not shown), a temporal resolution of 800 ms was tested instead of 200 ms. In this case, the 290 

match between central and peripheral datasets was compromised; the library of a lower temporal resolution 

resulted in six fewer reused k lines on average compared with the 200 ms case. However, even in this case, the 

dynamic keyhole method was superior to the conventional keyhole when reusing an average of ten more k lines. 

Serially acquired peripheral dataset acquisitions corresponding to the same dataset magnitude as that needed for 

the real-time central k-space datasets could reduce data mismatch, but it would increase the time required to 295 

create the library.  

The performance of the proposed dynamic keyhole method is reliant on the quality of the library and the 

ability to match it accurately to the central k-space datasets. After an additional simulation to find the optimum 

amount of datasets for the library, we suggest a greater number of breathing cycles when large cycle-to-cycle 

variations in respiratory displacement are present. This increase is to better account for variability in the 300 

subjects’ breathing patterns. In an example from the subject 9, session 1, the number of k lines was measured at 

186 and 200 lines when a single respiratory cycle and five respiratory cycles were used, respectively, due to 

irregular breathing (e.g. baseline drifts, overly deep/shallow breathing) during the library acquisition. The major 

factors leading to improved performance in the dynamic keyhole method were regular breathing30 and the 

coverage of the library in respiratory displacements, which resulted in up to an 80% performance improvement 305 

with the internal respiratory signals and 70% with the external respiratory signals.  

This study has demonstrated that the dynamic keyhole method is a promising MR image reconstruction 

technique applicable for real-time imaging of the thoracic and abdominal regions. The dynamic keyhole can be 

easily applied to a variety of pulse sequences and scanners, and can be combined with other fast imaging 
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techniques, such as k-space undersampling, and respiratory-gated imaging for real-time image guided 310 

radiotherapy, such as radiotherapy systems integrated with MRI.7-9 A variety of inputs can be utilized for a 

respiratory signal, such as bellows belts35, navigator34, and ANZAI.36 

 

 

V. CONCLUSION 315 

In this study, the dynamic keyhole method utilized respiratory signals to improve MR images in the presence of 

respiratory motion, leading to a 79% reduction in central k-space datasets required for real-time MR imaging, 

while maintaining sufficient image quality. In addition, this was the first study in which MR image 

reconstruction utilized respiratory signals for real-time thoracic imaging. Our results suggest that the dynamic 

keyhole method could be a desirable technique for image-guided radiation therapy and MRI-guided 320 

radiotherapy that requires real-time MR monitoring in the thoracic region. 
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