708 research outputs found

    Marine sponge as a source of antiangiogenic compounds. The case of aeroplysinin-1

    Get PDF
    The vast majority of the natural compounds that have been previously described as inhibitors of angiogenesis have been isolated from plants and terrestrial microorganisms, mainly due to their higher availability and because their therapeutic effects had been previously known in folk traditional medicines. However, increasing attention is being paid to the development of marine-derived antiangiogenic agents, probably fuelled by the increase in the number of marine-derived anticancer drugs which are being successfully used for cancer therapy. Marine organisms, adapted to survive in extreme environments by developing chemical means of defence, produce interesting and singular pharmacological lead compounds, derived from the large diversity of marine habitats and environmental conditions. Among the many different types of marine organisms used as a source for drug discovery, sponges represent one of the most promising sources of leads in the research of new cancer drugs. Some angiogenesis inhibitors isolated from marine sponges have been described by us and others. Aeroplysinin-1, a brominated metabolite extracted from the marine sponge Aplysina aerophoba, has been characterized by our group as a potent antiangiogenic compound in vitro and in vivo. Aeroplysinin-1 induces apoptosis in endothelial cells by a mechanism which involves activation of the BH3-only pro-apoptotic protein Bad, cytochrome c release and activation of caspases 2, 3, 8 and 9, what indicates a relevant role of the mitochondria in the apoptogenic activity of this compound. Recent results suggest that aeroplysinin-1 could also be a novel potential anti-inflammatory compound. These results open new ways to the potential pharmacological action of aeroplysinin-1 not only on angiogenesis and cancer, but also on atherosclerosis and inflammation-dependent diseases.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Iron is an essential nutrient but can be toxic at high intracellular concentrations and organisms have evolved tightly regulated mechanisms for iron uptake and homeostasis. Information on iron management mechanisms is available for organisms living at circumneutral pH. However, very little is known about how acidophilic bacteria, especially those used for industrial copper bioleaching, cope with environmental iron loads that can be 10<sup>18 </sup>times the concentration found in pH neutral environments. This study was motivated by the need to fill this lacuna in knowledge. An understanding of how microorganisms thrive in acidic ecosystems with high iron loads requires a comprehensive investigation of the strategies to acquire iron and to coordinate this acquisition with utilization, storage and oxidation of iron through metal responsive regulation. <it>In silico </it>prediction of iron management genes and Fur regulation was carried out for three Acidithiobacilli: <it>Acidithiobacillus ferrooxidans </it>(iron and sulfur oxidizer) <it>A. thiooxidans </it>and <it>A. caldus </it>(sulfur oxidizers) that can live between pH 1 and pH 5 and for three strict iron oxidizers of the <it>Leptospirillum </it>genus that live at pH 1 or below.</p> <p>Results</p> <p>Acidithiobacilli have predicted FeoB-like Fe(II) and Nramp-like Fe(II)-Mn(II) transporters. They also have 14 different TonB dependent ferri-siderophore transporters of diverse siderophore affinity, although they do not produce classical siderophores. Instead they have predicted novel mechanisms for dicitrate synthesis and possibly also for phosphate-chelation mediated iron uptake. It is hypothesized that the unexpectedly large number and diversity of Fe(III)-uptake systems confers versatility to this group of acidophiles, especially in higher pH environments (pH 4–5) where soluble iron may not be abundant. In contrast, Leptospirilla have only a FtrI-Fet3P-like permease and three TonB dependent ferri-dicitrate siderophore systems. This paucity of iron uptake systems could reflect their obligatory occupation of extremely low pH environments where high concentrations of soluble iron may always be available and were oxidized sulfur species might not compromise iron speciation dynamics. Presence of bacterioferritin in the Acidithiobacilli, polyphosphate accumulation functions and variants of FieF-like diffusion facilitators in both Acidithiobacilli and Leptospirilla, indicate that they may remove or store iron under conditions of variable availability. In addition, the Fe(II)-oxidizing capacity of both <it>A. ferrooxidans </it>and Leptospirilla could itself be a way to evade iron stress imposed by readily available Fe(II) ions at low pH. Fur regulatory sites have been predicted for a number of gene clusters including iron related and non-iron related functions in both the Acidithiobacilli and Leptospirilla, laying the foundation for the future discovery of iron regulated and iron-phosphate coordinated regulatory control circuits.</p> <p>Conclusion</p> <p><it>In silico </it>analyses of the genomes of acidophilic bacteria are beginning to tease apart the mechanisms that mediate iron uptake and homeostasis in low pH environments. Initial models pinpoint significant differences in abundance and diversity of iron management mechanisms between Leptospirilla and Acidithiobacilli, and begin to reveal how these two groups respond to iron cycling and iron fluctuations in naturally acidic environments and in industrial operations. Niche partitions and ecological successions between acidophilic microorganisms may be partially explained by these observed differences. Models derived from these analyses pave the way for improved hypothesis testing and well directed experimental investigation. In addition, aspects of these models should challenge investigators to evaluate alternative iron management strategies in non-acidophilic model organisms.</p

    Active disturbance rejection control: a guide for design and application

    Get PDF
    [EN] This tutorial addresses the design of controllers by active disturbance rejection control (ADRC). First, the main blocks in the ADRC loop are described. Next, the formulation of the control problem under the disturbance rejection framework is discussed, as well as the tuning of the gains set which are part of the main loop and a guide on designing of the active disturbance rejection controller is presented. This tutorial aims to offer an introduction to readers about the ADRC and a review of the most significant publications that have contributed to development and advance in the research related to the area. To illustrate the design procedure, two examples are included: thermal control and the multivariable control of a chemical process.[ES] Este tutorial aborda el diseño de controladores lineales por rechazo activo de perturbaciones (ADRC). Se inicia con la descripción de los bloques que componen el lazo ADRC. Seguidamente, se discute la formulación del problema de control en el marco del rechazo de perturbaciones, la sintonización del conjunto de ganancias que hacen parte del lazo y se presenta una guía general para el diseño del controlador lineal por rechazo activo de perturbaciones. Con este tutorial se pretende ofrecer una introducción a los lectores sobre el ADRC y una reseña de los trabajos que indican las tendencias de investigación en el área. Para ilustrar el procedimiento de diseño, se incluyen dos ejemplos: el control de un proceso térmico y el control multivariable de un proceso químico.Martínez, B.; Sanchis, J.; García-Nieto, S.; Martínez, M. (2021). Control por rechazo activo de perturbaciones: guía de diseño y aplicación. Revista Iberoamericana de Automática e Informática industrial. 18(3):201-217. https://doi.org/10.4995/riai.2020.14058OJS201217183Ahi, B., Haeri, M., 2018. Linear active disturbance rejection control from the practical aspects. IEEE/ASME Transactions on Mechatronics 23 (6), 2909-2919. https://doi.org/10.1109/tmech.2018.2871880Ahmad, S., Ali, A., 2019. Active disturbance rejection control of DC-DC boost converter: a review with modifications for improved performance. IET Power Electronics 12 (8), 2095-2107. https://doi.org/10.1049/iet-pel.2018.5767Albertos, P., Garcia, P., Gao, Z., Liu, T., 2014. Disturbance rejection in process control. In: Proceeding of the 11th World Congress on Intelligent Control and Automation. IEEE. https://doi.org/10.1109/wcica.2014.7053408Baquero-Suarez, M., Cortes-Romero, J., Arcos-Legarda, J., Coral-Enriquez, H., 2018. Estabilización automática de una bicicleta sin conductor mediante el enfoque de control por rechazo activo de perturbaciones. Revista Iberoamericana de Automática e Informática industrial 15 (1), 86-100. https://doi.org/10.4995/riai.2017.8832Castillo, A., García, P., Sanz, R., Albertos, P., 2018. Enhanced extended state observer-based control for systems with mismatched uncertainties and disturbances. ISA Transactions 73, 1-10. https://doi.org/10.1016/j.isatra.2017.12.005Chen, W.-H., Yang, J., Guo, L., Li, S., 2016. Disturbance-observer-based control and related methods-an overview. IEEE Transactions on Industrial Electronics 63 (2), 1083-1095. https://doi.org/10.1109/tie.2015.2478397Cheng, Y., Chen, Z., Sun, M., Sun, Q., Aug. 2019. Active disturbance rejection generalized predictive control for a high purity distillation column process with time delay. The Canadian Journal of Chemical Engineering 97 (11), 2941-2951. https://doi.org/10.1002/cjce.23513Chu, Z.,Wu, C., Sepehri, N., 2019. Active disturbance rejection control applied to high-order systems with parametric uncertainties. International Journal of Control, Automation and Systems 17 (6), 1483-1493. https://doi.org/10.1007/s12555-018-0509-8Feng, H., Guo, B.-Z., 2017. Active disturbance rejection control: Old and new results. Annual Reviews in Control 44, 238-248. https://doi.org/10.1016/j.arcontrol.2017.05.003Fu, C., Tan, W., 2016. Tuning of linear ADRC with known plant information. ISA Transactions 65, 384-393. https://doi.org/10.1016/j.isatra.2016.06.016Gao, Z., 2003. Scaling and bandwidth-parameterization based controller tuning. In: Proceedings of the 2003 American Control Conference, 2003. IEEE. https://doi.org/10.1109/acc.2003.1242516Gao, Z., 2014. On the centrality of disturbance rejection in automatic control. ISA Transactions 53 (4), 850-857. https://doi.org/10.1016/j.isatra.2013.09.012Guerrero-Ramírez, E. O., Martínez-Barbosa, A., Ramírez, E.-G., Linares-Flores, J., Sira-Ramírez, H., 2018. Control del convertidor CD/CD reductor-paralelo implementado en FPGA. Revista Iberoamericana de Automática e Informática industrial 15 (3), 309-316. https://doi.org/10.4995/riai.2018.8925Guo, B.-Z., Zhao, Z.-L., 2016. Active Disturbance Rejection Control for Nonlinear Systems. John Wiley & Sons Singapore Pte. Ltd. https://doi.org/10.1002/9781119239932Han, J., 2009. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics 56 (3), 900-906. https://doi.org/10.1109/tie.2008.2011621He, T., Wu, Z., Li, D., Wang, J., 2020. A tuning method of active disturbance rejection control for a class of high-order processes. IEEE Transactions on Industrial Electronics 67 (4), 3191-3201. https://doi.org/10.1109/tie.2019.2908592Herbst, G., 2013. A simulative study on active disturbance rejection control (ADRC) as a control tool for practitioners. Electronics 2 (4), 246-279. https://doi.org/10.3390/electronics2030246Herbst, G., 2016. Practical active disturbance rejection control: Bumpless transfer, rate limitation, and incremental algorithm. IEEE Transactions on Industrial Electronics 63 (3), 1754-1762. https://doi.org/10.1109/tie.2015.2499168Huang, C., Du, B., 2016. Dierentially flatness active disturbance rejection control approach via algebraic parameter identification to double tank problem. In: 2016 35th Chinese Control Conference (CCC). IEEE. https://doi.org/10.1109/chicc.2016.7553678Huang, Y., Xue, W., 2014. Active disturbance rejection control: Methodology and theoretical analysis. ISA Transactions 53 (4), 963-976. https://doi.org/10.1016/j.isatra.2014.03.003Huilcapi, V., Herrero, J. M., Blasco, X., Martínez-Iranzo, M., 2017. Non-linear identification of a peltier cell model using evolutionary multi-objective optimization. IFAC-PapersOnLine 50 (1), 4448-4453. https://doi.org/10.1016/j.ifacol.2017.08.372Inoue, S., Ishida, Y., 2016. Design of a model-following controller using a decoupling active disturbance rejection control method. Journal of Electrical & Electronic Systems 05 (01). https://doi.org/10.4172/2332-0796.1000174Li, D., Chen, X., Zhang, J., Jin, Q., 2020. On parameter stability region of LADRC for time-delay analysis with a coupled tank application. Processes 8 (2), 223. https://doi.org/10.3390/pr8020223Li, J., Qi, X. H., Wan, H., Xia, Y. Q., 2017a. Active disturbance rejection control: theoretical results summary and future researches. Kongzhi Lilun Yu Yingyong/Control Theory and Applications 34, 281-295. https://doi.org/10.7641/CTA.2017.60363Li, J., Xia, Y., Qi, X., Gao, Z., 2017b. On the necessity, scheme, and basis of the linear-nonlinear switching in active disturbance rejection control. IEEE Transactions on Industrial Electronics 64 (2), 1425-1435. https://doi.org/10.1109/tie.2016.2611573Li, S., Yang, J., Chen,W.-H., Chen, X., 2012. Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Transactions on Industrial Electronics 59 (12), 4792-4802. https://doi.org/10.1109/tie.2011.2182011Liang, Q., Wang, C. B., Pan, J. W., Wei, Y. H., Wang, Y., 2015. Parameter identification of b0 and parameter tuning law in linear active disturbance rejection control. Kongzhi yu Juece/Control and Decision 30, 1691-1695. https://doi.org/10.13195/j.kzyjc.2014.0943Luyben, W. L., 1990. Process Modeling, Simulation, and Control for Chemical Engineers. McGraw-Hill.Madonski, R., Gao, Z., Lakomy, K., 2015. Towards a turnkey solution of industrial control under the active disturbance rejection paradigm. In: 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). IEEE. https://doi.org/10.1109/sice.2015.7285478Madonski, R., Piosik, A., Herman, P., 2013. High-gain disturbance observer tuning seen as a multicriteria optimization problem. In: 21st Mediterranean Conference on Control and Automation. IEEE. https://doi.org/10.1109/med.2013.6608905Madonski, R., Shao, S., Zhang, H., Gao, Z., Yang, J., Li, S., 2019. General error-based active disturbance rejection control for swift industrial implementations. Control Engineering Practice 84, 218-229. https://doi.org/10.1016/j.conengprac.2018.11.021Marlin, T., 2000. Process Control: Designing Processes and Control Systems for Dynamic Performance. McGraw-Hill.Martínez, B. V., Jul 2020. Active Disturbance Rejection Control-implementation examples. Version 1.0.0. url: https://www.mathworks.com/matlabcentral/fileexchange/78459.Maxim, A., Copot, D., Copot, C., Ionescu, C. M., 2019. The 5w's for control as part of industry 4.0: Why, what, where, who, and when-a PID and MPC control perspective. Inventions 4 (1), 10. https://doi.org/10.3390/inventions4010010Nowicki, M., Madonski, R., Kozlowski, K., 2015. First look at conditions on applicability of ADRC. In: 2015 10th International Workshop on Robot Motion and Control (RoMoCo). IEEE. https://doi.org/10.1109/romoco.2015.7219750Parvathy, R., Daniel, A. E., 2013. A survey on active disturbance rejection control. In: 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s). IEEE. https://doi.org/10.1109/imac4s.2013.6526432Pérez-Polo, M., Albertos, P., 2007. Nonisothermal stirred-tank reactor with irreversible exothermic reaction a ! b: 2. nonlinear phenomena. In: Selected Topics in Dynamics and Control of Chemical and Biological Processes. Springer Berlin Heidelberg, pp. 243-279. https://doi.org/10.1007/978-3-540-73187_8Reynoso, G., Blasco, X., Sanchis, J., Herrero, J. M., 2017. Controller Tuning with Evolutionary Multiobjective Optimization. Springer International Publishing. https://doi.org/10.1007/978-3-319-41301-3Sanz, R., Garcia, P., Albertos, P., 2015. Active disturbance rejection by state feedback: Experimental validation in a 3-dof quadrotor platform. In: 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). pp. 794-799. https://doi.org/10.1109/SICE.2015.7285349Sira-Ramírez, H., 2018. From flatness, GPI observers, GPI control and flat filters to observer-based ADRC. Control Theory and Technology 16 (4), 249-260. https://doi.org/10.1007/s11768-018-8134-xSun, L., Li, D., Gao, Z., Yang, Z., Zhao, S., 2016. Combined feedforward and model-assisted active disturbance rejection control for non-minimum phase system. ISA Transactions 64, 24-33. https://doi.org/10.1016/j.isatra.2016.04.020Sun, L., Zhang, Y., Li, D., Lee, K. Y., 2019. Tuning of active disturbance rejection control with application to power plant furnace regulation. Control Engineering Practice 92, 104122. https://doi.org/10.1016/j.conengprac.2019.104122Tan,W., Fu, C., 2016. Linear active disturbance-rejection control: Analysis and tuning via imc. IEEE Transactions on Industrial Electronics 63 (4), 2350-2359.Teppa-Garran, P., Garcia, G., 2014. ADRC tuning employing the LQR approach for decoupling uncertain MIMO systems. Information Technology And Control 43 (2). https://doi.org/10.5755/j01.itc.43.2.4059Wu, X., Chen, Z., Zhao, Y., Sun, L., Sun, M., 2018. A comprehensive decoupling control strategy for a gas flow facility based on active disturbance rejection generalized predictive control. The Canadian Journal of Chemical Engineering 97 (3), 762-776. https://doi.org/10.1002/cjce.23215Xue,W., Huang, Y., 2015. Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems. ISA Transactions 58, 133-154. https://doi.org/10.1016/j.isatra.2015.05.001Xue, W., Huang, Y., Gao, Z., 2016. On ADRC for non-minimum phase systems: canonical form selection and stability conditions. Control Theory and Technology 14 (3), 199-208. https://doi.org/10.1007/s11768-016-6041-6Zhang, B., Tan, W., Li, J., 2019. Tuning of linear active disturbance rejection controller with robustness specification. ISA Transactions 85, 237-246. https://doi.org/10.1016/j.isatra.2018.10.018Zhao, C., Li, D., 2014. Control design for the SISO system with the unknown order and the unknown relative degree. ISA Transactions 53 (4), 858-872. https://doi.org/10.1016/j.isatra.2013.10.001Zhao, C., Li, D., Cui, J., Tian, L., 2018. Decentralized low-order ADRC design for MIMO system with unknown order and relative degree. Personal and Ubiquitous Computing 22 (5-6), 987-1004. https://doi.org/10.1007/s00779-018-1158-xZhao, S., Gao, Z., 2010. Active disturbance rejection control for non-minimum phase systems. In: Proceedings of the 29th Chinese Control Conference. pp. 6066-6070.Zhao, S., Gao, Z., 2014. Modified active disturbance rejection control for time delay systems. ISA Transactions 53 (4), 882-888. https://doi.org/10.1016/j.isatra.2013.09.013Zhao, S., Xue, W., Gao, Z., 2013. Achieving minimum settling time subject to undershoot constraint in systems with one or two real right half plane zeros. Journal of Dynamic Systems, Measurement, and Control 135 (3). https://doi.org/10.1115/1.4023211Zheng, Q., Chen, Z., Gao, Z., 2009. A practical approach to disturbance decoupling control. Control Engineering Practice 17 (9), 1016-1025. https://doi.org/10.1016/j.conengprac.2009.03.005Zheng, Q., Gao, L. Q., Gao, Z., 2012. On validation of extended state observer through analysis and experimentation. Journal of Dynamic Systems, Measurement, and Control 134 (2). https://doi.org/10.1115/1.4005364Zheng, Q., Gao, Z., 2010. On practical applications of active disturbance rejection control. In: Proceedings of the 29th Chinese Control Conference. pp. 6095-6100.Zheng, Q., Gao, Z., 2016. Active disturbance rejection control: between the formulation in time and the understanding in frequency. Control Theory and echnology 14 (3), 250-259. https://doi.org/10.1007/s11768-016-6059-9Zheng, Q., Gao, Z., 2018. Active disturbance rejection control: some recent experimental and industrial case studies. Control Theory and Technology 16 (4), 301-313. https://doi.org/10.1007/s11768-018-8142-xZheng, Q., Gaol, L. Q., Gao, Z., 2007. On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics. In: 2007 46th IEEE Conference on Decision and Control. IEEE. https://doi.org/10.1109/cdc.2007.4434676Zhou, R., Tan,W., 2019. Analysis and tuning of general linear active disturbance rejection controllers. IEEE Transactions on Industrial Electronics 66 (7), 5497-5507. https://doi.org/10.1109/tie.2018.286934

    Phenolic compounds biodegradation of olive mill wastewater with Aspergillus terreus

    Get PDF
    Se estudia la degradación de alpechines con Aspergillus terreus en condiciones de aerobiosis y temperatura de 28°C, utilizando como parámetro el contenido fenólico. Se analiza el efecto de la concentración de alpechín con Aspergillus terreus utilizando el mismo parámetro. Se han identificado por cromatografía líquida de alta eficacia (CLAE) 10 compuestos fenólicos que suponen el 90% del total del alpechín.Olive mill wastewater degradation by Aspergillus terreus and under aerobic conditions at 28-degrees-C, was measured by the parameter of phenol content. We have explored the effect ot different concentrations of olive mill wastewater upon the activity of Aspergillus terreus. Through HPLC, 10 phenol compounds (90% of the total phenolic content of the olive mill wastewater) were identified

    MANEJO DEL RIEGO Y ABONADO EN EL CULTIVO DE LA PATATA EN LA COSTA NOROESTE DE CÁDIZ

    Full text link
    [ES] Desde el Sistema de Asistencia al Regante del Instituto de Investigación y Formación Agraria y Pesquera de Andalucía (IFAPA) en el Centro de Chipiona (Cádiz), se está desarrollando una labor de experimentación de cultivos hortícolas al aire libre. En esta línea se están ensayando cultivos para evaluar la eficiencia del riego y abonado nitrogenado. El objetivo final de estos ensayos es generar unas recomendaciones de riego y fertirrigación útiles para el sector. El cultivo de la patata es un cultivo muy extendido en la zona de Costa Noroeste de Andalucía, por su precocidad en la comarca. El objetivo general del ensayo es determinar de todos los posibles manejos de riego y abonado, cual es la opción más eficiente y más productiva. Para ello se ha utilizado tres dosis de riego, una sobre las necesidades potenciales de agua, otra por encima y otra por debajo, la primera de ellas con manejo dos métodos de riego: aspersión y goteo. Además cada una de estas estrategias con dos dosis distintas de abonado. Y todo ello replicado en dos parcelas de distintos suelos. El resultado general de todo el abanico de posibilidades ha sido que está muy influenciado del tipo de suelo. Para un suelo más equilibrado el abonado determina mucho más los buenos resultados y con dosis de riego más justas el del abonado es muy determinante. Sin embargo en parcelas de suelo arenoso la dosis de riego en el rendimiento es determinante, pero la variable abonado influye en menor medida en el rendimiento y menos cuando la dosis de riego es más alta, induciéndose a regar con riegos con una mayor frecuencia a la diaria.Salvatierra Bellido, B.; Márquez Ruiz, A.; Luque Sánchez, S.; Nieto Martínez, A.; Acosta Galán, J. (2015). MANEJO DEL RIEGO Y ABONADO EN EL CULTIVO DE LA PATATA EN LA COSTA NOROESTE DE CÁDIZ. En XXXIII CONGRESO NACIONAL DE RIEGOS. Valencia 16-18 junio de 2015. Editorial Universitat Politècnica de València. https://doi.org/10.4995/CNRiegos.2015.1506OC

    Bacterioplankton responses to riverine and atmospheric inputs in a coastal upwelling system (Ría de Vigo, NW Spain)

    Get PDF
    Original research paperAnthropogenic pressures are changing the magnitude and nature of matter inputs into the ocean. The Ría de Vigo (NW Spain) is a highly productive and dynamic coastal system that is likely affected by such alterations. Previous nutrient-addition microcosm experiments conducted during contrasting hydrographic conditions suggested that heterotrophic bacteria are limited by organic carbon (C) and occasionally co-limited by inorganic nutrients in this coastal area. In order to assess short-term responses in biomass, production, and respiration of heterotrophic bacteria from the Ría de Vigo to increasing amounts of natural inputs of matter, we conducted 6 microcosm experiments, wherein surface seawater collected in spring, summer, and autumn was mixed with increasing amounts of dissolved natural matter concentrates from riverine and atmospheric origin. Simultaneous experiments with controlled inorganic and/or organic additions indicated that bacteria were co-limited by inorganic nutrients and C in spring and summer and primarily limited by C in autumn. Production responded more than biomass to increasing inputs of matter, whereas respiration did not change. The bacterial production response to increasing dissolved organic C load associated with riverine and atmospheric inputs was strongly related to the relative phosphorus (P) content of the dissolved matter concentrates. Our data suggest that bacterial production might decrease with the increase of P-deficient allochthonous matter inputs, which would have important biogeochemical consequences for C cycling in coastal areas.Spanish Ministry of Science and Innovation, MINECO, CSIC, Xunta of Galicia and European Union (Marie Curie Grants)Versión del edito

    Dissolved organic matter (DOM) in the open Mediterranean Sea. II: Basin-wide distribution and drivers of fluorescent DOM

    Get PDF
    Research articleFluorescent dissolved organic matter (FDOM) in the Mediterranean Sea was analysed by excitation–emission matrix (EEM) spectroscopy and parallel factor (PARAFAC) analysis during the cruise HOTMIX 2014. A 4–component model, including 3 humic–like and 1 protein–like compounds, was obtained. To decipher the environmental factors that dictate the distributions of these components, we run generalized additive models (GAMs) in the epipelagic layer and an optimum multiparametric (OMP) water masses analysis in the meso– and bathypelagic layers. In the epipelagic layer, apparent oxygen utilization (AOU) and temperature presented the most significant effects on the variability of the marine humic-like peak M fluorescence, suggesting that its distribution was controlled by the net community respiration of organic matter and photobleaching. On the contrary, the variability of the soil humic-like peak E and the protein–like peak T fluorescence was explained mainly by the prokaryotic heterotrophic abundance, which decreased eastwards. In the meso– and bathypelagic layers, water mass mixing and basin–scale mineralization processes explained >72% and 63% of the humic–like and protein–like fluorescence variability, respectively. When analysing the two basins separately, the OMP model offered a better explanation of the distribution of fluorescence in the eastern Mediterranean Sea, as expected from the reduced biological activity in this ultra–oligotrophic basin. Furthermore, while western Mediterranean deep waters display the usual trend in the global ocean (increase of humic–like fluorescence and decrease of protein–like fluorescence with higher AOU values), the eastern Mediterranean deep waters presented an opposite trend. Different initial fluorescence intensities of the water masses that mix in the eastern basin, with Adriatic and Aegean origins, seem to be behind this contrasting pattern. The analysis of the transect–scale mineralization processes corroborate this hypothesis, suggesting a production of humic–like and a consumption of protein–like fluorescence in parallel with water mass ageing. Remarkably, the transect–scale variability of the chromophoric dissolved organic matter (CDOM) absorbing at the excitation wavelength of the humic–like peak M indicates an unexpected loss with increasing AOU, which suggests that the consumption of the non–fluorescent fraction of CDOM absorbing at that wavelength exceeded the production of the fluorescent fraction observed hereProject HOTMIX (reference CTM2011–30010–C02 01–MAR and 02–MAR), co–financed with FEDER funds (re ference BES–2012–056175) ; the project MODMED from CSIC (PIE, 201730E020) and the project FERMIO (MINECO, CTM2014–57334–JIN), co–financed with FEDER fundsVersión del editor3,26

    Long-term immune response accompanies clinical outcomes in severe asthmatics treated with anti-IL-5/IL-5R biologics

    Full text link
    This work was supported by ISCIII - Instituto de Salud Carlos III, FIS (Fondo de Investigación Sanitaria - Spanish Health Research Fund) grants PI21/00896 and FI19/00067; Ciber de Enfermedades Respiratorias (CIBERES); SEAIC grants 22A07; BASEAS STUDY (Basophils in EosinophilicAsthma) Study Code ESR-20-20764 AstraZeneca International; Comunidad de Madrid grant PEJ2021-AI_BMD-22320 and FEDER funds (Fondo Europeo de Desarrollo Regiona

    Restoration of european habitats in mainland, Portugal, using commercial seed mixtures. Considerations for its management and conservation

    Get PDF
    Permanent mountain pastures include meadows and other perennial pastures of high ecological, economic, cultural and scenic value. Increasing desertification limits the maintenance and conservation of its biodiversity and the associated landscape mosaic. A restoration experiment in permanent high altitude grasslands in Beira Alta (Centre East (CE) mainland Portugal) was made, by sowing adequate cultivars of existing grass and legume species. The main objectives addressed were: (1) comparison of floristic composition between reference communities included in the previous habitats and the improved communities; (2) evaluation of the success of sowing adequate cultivars of autochthonous species; (3) evaluation of the establishment of target species in terms of the maintenance of floristic composition of reference. The experiment was carried out in 2014 on nine farms situated in Beira Alta (Guarda District) and the phytosociological method was applied in the floristic surveys. The sown species with highest percentage of soil cover were Trifolium subterraneum, Lolium multiflorum, Ornithopus sativus and Trifolium vesiculosum. In the priority habitat 6220 it was observed a re-establishment of many species in their original composition and a high cover of several cultivars of Trifolium subterraneum. These results highlight the importance of using cultivars of autochthonous species in the improvement of altitude pasturesinfo:eu-repo/semantics/publishedVersio
    corecore