2,733 research outputs found

    Extraction transformation load (ETL) solution for data integration: a case study of rubber import and export information

    Get PDF
    Data integration is important in consolidating all the data in the organization or outside the organization to provide a unified view of the organization's information. Extraction Transformation Load (ETL) solution is the back-end process of data integration which involves collecting data from various data sources, preparing and transforming the data according to business requirements and loading them into a Data Warehouse (DW). This paper explains the integration of the rubber import and export data between Malaysian Rubber Board (MRB) and Royal Malaysian Customs Department (Customs) using the ETL solution. Microsoft SQL Server Integration Services (SSIS) and Microsoft SQL Server Agent Jobs have been used as the ETL tool and ETL scheduling

    Biometric signature verification system based on freeman chain code and k-nearest neighbor

    Get PDF
    Signature is one of human biometrics that may change due to some factors, for example age, mood and environment, which means two signatures from a person cannot perfectly matching each other. A Signature Verification System (SVS) is a solution for such situation. The system can be decomposed into three stages: data acquisition and preprocessing, feature extraction and verification. This paper presents techniques for SVS that uses Freeman chain code (FCC) as data representation. Before extracting the features, the raw images will undergo preprocessing stage; binarization, noise removal, cropping and thinning. In the first part of feature extraction stage, the FCC was extracted by using boundary-based style on the largest contiguous part of the signature images. The extracted FCC was divided into four, eight or sixteen equal parts. In the second part of feature extraction, six global features were calculated against split image to test the feature efficiency. Finally, verification utilized Euclidean distance to measured and matched in k-Nearest Neighbors. MCYT bimodal database was used in every stage in the system. Based on the experimental results, the lowest error rate for FRR and FAR were 6.67 % and 12.44 % with AER 9.85 % which is better in term of performance compared to other works using that same database

    The Perception of Learning English By Undergraduate Students

    Get PDF
    This research analyzed the perception of undergraduate students on learning English. This research adopted the theory on perception proposed by Efron (1968) in which he stated that perception is the primary cognitive contact of person with the world around him. It was completed by adopting quantitative method in which the data were collected by sharing questionnaire to undergraduate students as its respondents. The questionnaire was tested by Product Moment Pearson to meet its validity with t-table larger than r-table, and by Alpha Coefficient to meet its reliability with Cronbach‘s Alpha value larger than 0,6. Furthermore, the data obtained from the questionnaire were analyzed by using Likert Scale with four alternative responses. They were Strongly Disagree (0% – 24.99%), Disagree (25% - 49.99%), Agree (50% - 74.99%), and Strongly Agree (75% - 100%). The research found that the perception of the respondents towards English learning is 66%.   Keywords: Perception, Learning English, undergraduate studen

    Development of wireless vehicle remote control for fuel lid operation

    Get PDF
    Nowadays, the evolution of the vehicle technology had made the vehicle especially car to be equipped with a remote control to control the operation of the locking and unlocking system of the car’s door and rear’s bonnet. However, for the fuel or petrol lid, it merely can be opened from inside the car’s cabin by handling the fuel level inside the car’s cabin to open the fuel lid. The petrol lid can be closed by pushing the lid by hand. Due to the high usage of using fuel lever to open the fuel lid when refilling the fuel, the car driver might encounter the malfunction of fuel lid (fail to open) when pushing or pulling the fuel lever. Thus, the main aim of the research is to enhance the operation of an existing car remote control where the car fuel lid can be controlled using two techniques; remote control-based and smartphone-based. The remote control is constructed using Arduino microcontroller, wireless sensors and XCTU software to set the transmitting and receiving parameters. Meanwhile, the smartphone can control the operation of the fuel lid by communicating with Arduino microcontroller which is attached to the fuel lid using Bluetooth sensor to open the petrol lid. In order to avoid the conflict of instruction between wireless systems with the existing mechanical-based system, the servo motor will be employed to release the fuel lid merely after receiving the instruction from Arduino microcontroller and smartphone. As a conclusion, the prototype of the multipurpose vehicle remote control is successfully invented, constructed and tested. The car fuel lid can be opened either using remote control or smartphone in a sequential manner. Therefore, the outcome of the project can be used to serve as an alternative solution to solve the car fuel lid problem even though the problem rarely occurred

    An adaptation of deep learning technique in orbit propagation model using long short-term memory

    Get PDF
    The orbit propagation model is used to predict the position and velocity of the satellites. It is crucial to obtain accurate predictions to ensure that satellite operation planning is in place and detects any possible disasters. However, the model's accuracy decreases as the propagation span increases if the input data are not updated. Therefore, to minimize these errors while still maintaining the model accuracy, a study is conducted. The Simplified General Perturbations-4 (SGP4) model and two-line elements (TLE) data are selected to perform this study. The problem is analyzed, and the deep learning technique is the proposed method to solve the issue. Next, the enhanced model is validated. The study aims to produce a reliable orbit propagation model and assist the satellite's operational planning. Also, the improved model can provide vital information for space-based organizations and anyone who may be affected

    Preparation, characterization and performances of photocatalytic TiO2-Ag2O/PESf membrane for methylene blue removal

    Get PDF
    This study proposed an effective method of methylene blue (MB) removal using a membrane with photocatalytic properties. The photocatalytic membrane, made of polyethersulfone (PESf) was incorporated with titanium dioxide (TiO2) and silver oxide (Ag2O) as the photocatalyst during the phase inversion process. TiO2 was synthesized using sol-gel method before being modified by Ag2O via wet pre-deposition method. The PESf/TiO2/Ag2O (PTA) membrane was characterized using scanning electron microscope coupled with elementary dispersion X-ray (SEM-EDX), X-ray diffraction analysis (XRD), attenuated Fourier transform infrared (ATR-FTIR), and ultraviolet visible near infrared (UV-vis NIR). The PTA membrane with 0.2 wt.% loading of TiO2/Ag2O shows uniform distribution of the photocatalyst materials and exhibits the highest degradation of MB at 85%. The TiO2/Ag2O presence was confirmed by the crystallinity analysis using XRD. UV-Vis NIR revealed that the band gap of TiO2 reduced from 3.2 to 2.1 eV when modified with Ag2O. This proved that membrane separation assisted with photocatalytic degradation is able to perform high degradation of MB dyes and has potential to be applied in industrial application

    COMPARISON OF ACTIVITY CONCENTRATIONS OF NATURAL RADIONUCLIDES IN SOILS COLLECTED AT DIFFERENT DEPTHS OF SELECTED HAND-DUG WELLS IN ABEOKUTA

    Get PDF
    This study was aimed at measuring and comparing the activity concentration of soil samples collected from some selected hand – dug wells with their corresponding depths of collection in Abeokuta metropolis. Total of twenty (20) soil samples were collected from hand-dug wells in five sites (Obada, Adigbe, Kuto, Olorunsogo, and Obantoko) within Abeokuta with four (4) soil samples from each hand-dug well at the surface, (0.0m) through to 2.25m depth. Gamma ray spectroscopy with High Purity Germanium (HPGe) detector was used for the measurements. The average activity concentrations obtained for the three natural radionuclides 226Ra, 232Th and 40K in Bq/Kg are 34.31 ± 2.01, 128.73 ± 4.41 and 152.31 ± 2.59 respectively at depth 0.00 m (surface), 23.00 ± 1.61, 68.39 ± 3.24 and 191.08 ± 3.11 respectively at depth 0.75 m, 31.52 ± 2.21, 145.37± 4.95 and 375.56 ± 5.50 respectively at 1.50 m and lastly 28.57±1.70, 95.61 ± 3.71 and 181.10 ± 3.94 respectively at 2.25 m depth. The world average activity concentrations for 226Ra, 232Th and 40K are given to be 35 Bqkg-1, 30 Bqkg-1 and 400 Bqkg-1 respectively (UNSCEAR 2000). 232Th showed  higher average values than the world’s average while averages of 226Ra and 40K were lower but most of the activity concentration values obtained in some of the locations are higher than the world’s average values, especially 226Raand 232Th in the soil samples.

    Optimization of non thermal plasma reactor performance for the decomposition of xylene

    Get PDF
    Non Thermal Plasma (NTP) is an emerging method used for the decomposition of volatile organic compounds (VOCs). This research focuses on the optimization of NTP reactor performance for decomposition of xylene from wastewater using response surface methodology (RSM) by operating the NTP reactor at applied voltage of 12-15 kV, discharge gap of 2.0-3.0 cm and gas flow rate of 2.0-5.0 L/min. An optimum xylene removal efficiency of 81.98% was obtained at applied voltage 15kV, discharge gap 2.09cm and gas flow rate at 2.36 L/min. The experimental removal efficiencies and model predictions were in close agreement with an error of 0.63%

    A simple load sensor based on a bent single-mode–multimode–single-mode fiber structure

    Get PDF
    A load sensor is demonstrated using a single-mode-multimode-single-mode (SMS) fiber structure, which is sandwiched between two CR-39 plastic polymer plates. A larger effective transverse strain can be achieved when the distance, D2, between the stage and the edge of the multimode fiber is larger. A higher sensitivity is obtained when D2 = 7 cm with a value of −0.0102 nm/mN, as compared to −0.0027 nm/mN when D2 = 3 cm. In contrast, an FBG integrated in a similar manner has shown an indiscernible change in the wavelength shift as compared to that produced by the SMS device. The result indicates that the proposed SMS device is suitable for sensing a small load or transverse strain with a reasonably high sensitivity

    Hollow-core photonic crystal fiber refractive index sensor based on modal interference

    Get PDF
    A refractive index sensor based modal interference in hollow core photonic crystal fiber (HCPCF) is proposed and demonstrated. The sensor is realized by splicing both ends of a HCPCF section to single mode fiber (SMF). At both splicing points, the HCPCF air holes are fully collapsed by the arc discharge. The collapsed regions excite and recombine core and cladding modes which formed modal interference for sensing purpose. The HCPCF sensor is tested in sugar solution and the response is measured from the wavelength shift in the interference spectra. The achieved sensitivity and resolution are 36.184 nm/RIU and 5.53-10-4 RIU, respectively, in refractive index range between 1.3330 and 1.3775. Result also shows that the sensor has a small temperature sensitivity of 19 pm/°C in the range of 35.5°C to 60.5 °C. The propos sensor potentially can be applied in biomedical, biological and chemical applications
    corecore