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Abstract—The orbit propagation model is used to predict the 

position and velocity of the satellites. It is crucial to obtain 

accurate predictions to ensure that satellite operation planning is 

in place and detects any possible disasters. However, the model's 

accuracy decreases as the propagation span increases if the input 

data are not updated.  Therefore, to minimize these errors while 

still maintaining the model accuracy, a study is conducted. The 

Simplified General Perturbations-4 (SGP4) model and two-line 

elements (TLE) data are selected to perform this study. The 

problem is analyzed, and the deep learning technique is the 

proposed method to solve the issue. Next, the enhanced model is 

validated. The study aims to produce a reliable orbit propagation 

model and assist the satellite's operational planning. Also, the 

improved model can provide vital information for space-based 

organizations and anyone who may be affected.  

Keywords—Orbit Propagation, SGP4, Deep Learning, 

Recurrent Neural Network, Long Short-Term Memory  

I. INTRODUCTION 

The operational planning for a satellite is essential as the life 
span is limited depending on its mission and design. For LEO 
satellite, the life span is typically five (5) years [1][2]. Thus, the 
satellite's operational planning must be well planned and 
accurate to carry out its mission. It would be disruptive and 
problematic for the user if they failed to perform the task due to 
improper planning. For example, the desired image unable to 
capture due to incorrect satellite position and timing. 

Meanwhile, the increasing number of space objects has 
indirectly increased the number of conflicts between them 
[3][4]. The space object also includes the debris in orbit around 
the Earth, which also can be dangerous. Therefore, for collision 
cases, preventive measures can be made even better if the 
problem can be detected earlier. Several incidents involving 
space objects have occurred, such as the February 2009 incident 
involving a U.S. Iridium communications satellite and Russian 
communications satellite Cosmos 2251 [5]. One of the major 
causes of this incident is the orbit propagation model's ability to 
obtain accurate information about the satellite position [6][7]. 
Besides that, the relevant information is only available after the 
incident happened. Therefore, it is necessary to have an accurate 

orbit propagation model for optimal satellite operation planning 
and oversee space catalog object growth to prepare and prevent 
space incidents. 

Many researchers have conducted various studies to improve 
the orbit propagation model. The Holt-Winters technique can 
increase accuracy up to 90.03% during a 30-day propagation 
span [8]. Later, a support vector machine (SVM) increased the 
orbit propagation's accuracy by 97.7%. However, if the 
propagation span is more than 28 days, the capability of SVM is 
reduced [9]. Further study has been done and shows that the 
machine learning approach can significantly improve the orbit 
prediction accuracy for the space objects' position and velocity. 
The increasing training data size can lead to a better performance 
until adequate data is used [7]. Therefore, in this study, the 
current problems are assessed, and a new solution to improve 
the current orbit propagation model by using the deep learning 
technique is the target. 

This paper is structured as follows. Section 2 discusses the 
related works of the orbit propagation model and the prediction 
technique used. The proposed method and the study results are 
described in Section 3 and Section 4, respectively. Section 5 
discusses the findings and study limits. Finally, the last section 
concludes the paper and points out the future work of this study. 

II. RELATED WORK 

The orbit propagation model's characterization is according 
to the perturbations, equation motion formulation, and the 
integration method [8]. Three (3) different orbit propagation 
models are analytical, semi-analytical, and numerical 
[10][11][12][13]—Fig. 1 shown the illustration of the orbit 
propagation model types. 

 

Fig. 1. Types of Orbit Propagation Model. 
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An analytical propagator used a closed-form solution to 
provide satellites position and velocity at a particular time by 
estimating object movement [14][15].  It is ideal for modeling a 
maintained orbit without maintenance maneuvers.  This 
propagator's advantage is its less computational, but it is less 
accurate than other propagators [16][17]. 

Next, semi-analytical used several closed-form approaches 
and numerical integration [18][19]. The semi-analytical 
technique constitutes a combined approach.  The complex 
perturbing effects values are included in the formulation and 
then transferred through analytical methods [8].  This propagator 
provides a quicker result compare to the total numerical 
integrations, and it is beneficial for long-term perturbation 
analysis [16][17].  

Lastly, the numerical propagators used numerical methods 
to integrate motion equations for space objects [15][20]. This 
technique is conducive to higher accuracy because it allows 
complex perturbation models, although the need for small 
integration steps translates into long computational time [8].  
The advantage of this type is it can give higher accuracy and 
used more cases than the other approach.  But the disadvantage 
is that it requires more computational effort [17]. 

Chen et al. had studied the difference of each orbit 
propagation model and identified that the most selected model 
used is Simplified General Perturbations-4 (SGP4) model, a 
semi-analytical model [21].  It is because the SGP4 model is the 
most complete, which includes various elements and orbit 
perturbations value compared to other models [17][22][23]. 

A. Simplified General Perturbations-4 (SGP4) Model 

Lane in 1965 has developed this SGP4 model, and it became 
operational in the early 1970s [22][24].  It is known as the most 
advanced space surveillance system with regular missions of 
space objects catalog, maintaining the catalog data, tracking the 
space objects, and updating the orbit elements [17][21][22].  

However, to use the SGP4 model, the Two-Line Element 
(TLE) data must be used as input data to the model.  TLE data 
ensure the maximum prediction accuracy obtained by the SGP4 
model [22]. The TLE data is known as the most comprehensive 
space object cataloging system in which the information is 
updated every 1-2 days for the expected target.  Meanwhile, for 
the critical target, it is updated 2-3 times every day.  The TLE is 
an open-source data provided by NORAD, and it is accessible 
worldwide except for military data of the United States and its 
alliances [21].  

Nevertheless, the accuracy of the SGP4 model decreased if 
the propagation span increased. The decrease happened because 
the period of validity of TLEs is limited to a specific period [8].  
As a result, the current system based on TLEs and SGP4 is 
becoming insufficient for satellite operation planning and Space 
Situational Awareness (SSA) growing demands. Also, TLE data 
does not include the orbital error information [25][26].  It only 
contains the mean orbital elements; thus, another method needs 
to be applied to calculate the orbit error covariance [27].  

B. Orbit Propagation Method 

Various methods have been used in the orbit propagation 
model. Table I lists the overview of these methods. 

TABLE I.  PROPAGATION METHOD OVERVIEW 

Technique Year Advantages Disadvantages 

Linear Propagator 
(LinCow/ 
CADET) [3] 

1970-
2006 

Simple, high 
computation 

efficiency 

Inaccurate for 
nonlinear system 

Nonlinear 
Propagator [3] 

1995-
2016 

High computation 
efficiency. 

Complex and 
curse of 

dimensionality. 
Coordinates 
Transformation 
[3] 

1996-
2015 

To avoid complex 
uncertainty 
propagators. 

Nonlinearity is 
not applicable 
for mapping. 

Hybrid Method  
[3, 8] 

2015-
Present 

High computation 
efficiency. 

Complex. 

From the list, the hybrid method is the latest method used. 
This hybrid method combines classical integration methods with 
prediction techniques such as time series technique, learning 
technique, etc. [8]. The hybrid method can improve 
computational efficiency, but due to the limitations of the 
prediction technique used, additional improvement is required 
[15]. Therefore, appropriate prediction techniques need to be 
selected and explored.  

C. Prediction Techniques 

In orbit propagation, errors during the initial control interval 
often show a systematic pattern repeated in each orbiter 
revolution [8]. Thus, to identify the suitable technique for this 
study, all related methods are investigated. 

In their proposition [28], Jeffrey and Aubrey used the 
Runge-Kutta method to deal with nonlinear equations that occur 
over time.  This method can handle nonlinear equations with 
longer time steps and reduce orbit propagation's computational 
cost.  However, it is not straightforward and rarely used. Bradley 
[29] had developed a new way for diverse orbit determination 
applications known as Bandlimited Collocation Implicit Runge-
Kutta (BLC-IRK).  This method can minimize computational 
costs and achieve various levels of accuracy.   

Besides that, the machine learning techniques had also 
adopted in the orbit propagation model.  The learning techniques 
used are neural networks, Kalman filters, and support vector 
machines (SVM) [7][9][30][31]. Neural networks improve the 
position accuracy and velocity of space objects with 
perturbation theory [30].  The results show that combining these 
techniques reduces orbiter position errors and improves the 
accuracy of orbit propagation. Through this study, the use of 
learning techniques proved effective and appropriate for the 
orbit propagation model. Subsequently, the Kalman Filter was 
used with a focus on data mining and extracting unknown power 
information. While the extended Kalman filter (EKF) estimates 
the orbital reproduction [31]. As a result, the position's accuracy 
increases and satisfies the position's accuracy. 

San-Juan et al. [32] have proposed a hybrid method that 
combines a simplified general perturbation theory and an 
additive Holt-Winters technique called the statistical time series 
model-based.  This approach increased the orbit propagation's 
accuracy; however, they have not considered the higher-order 
terms and other external forces during the modeling. Later, San-
Juan et al. [8] proposed a hybrid methodology to extend TLE 
validity with minimal changes to the SGP4 model.  They use the 
Holt winters technique to model the error time series into the 
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Hybrid TLE (HTLE).  This hybrid method allows the extension 
of the validity of TLE with little complexity and computational 
burden for the end-user [8].  However, the propagator's accuracy 
still decreased when the time horizon increased. 

Also, distribution regression techniques and transfer 
learning methods have been presented [33].  The results show 
that this method is better than conventional methods. SVM has 
also demonstrated an excellent ability to improve the accuracy 
of orbital predictions [7]. SVM performance improves after 
sufficient data used, but it is not suitable for handling limited or 
large amounts of data. Therefore, other techniques need to be 
used to address this problem.  

The selection of this study's technique depends on several 
criteria, namely root-mean-square error (RMSE) and accuracy. 
The RMSE is the average deviation of the predicted value 
quantity and represents the error that occurred during the 
forecast. The performance of the model will be better if the 
RMSE value is lower. While the accuracy value is to determine 
how well this technique can improve the model. The higher the 
accuracy value is, the better. The description of the selected 
methods is in the following sections. 

III. PROPOSED METHOD 

The study used the operational framework to guide the 
whole process.  It contains the structure of activities to achieve 
the objectives of this study.  There are four (4) main phases of 
this study's operational framework: the investigation, analysis 
and problem formulations, design and modeling, and evaluation.  
Several steps are adapted to realize this study in each phase.  Fig. 
2 shows the operational framework of the study. 

 

Fig. 2. Operational Framework. 

A. Phase 1: Investigation 

The most similar study is investigated in this phase to obtain 
the studies' gaps. I. Perez et al.  [34] and H. Peng and X. Bai [7] 
had improved the orbit propagation model by using learning 
techniques. I. Perez et al. [34] had studied fitting techniques, 
while H. Peng and X. Bai [7] studied on SVM technique. 
Recently, I. E. Dawoodjee and M. Rajeswari [35] used nonlinear 
regression (NLR) to solve this issue. In this sense, our study is 
different from theirs as we plan to use deep learning techniques 
to capture periodic data patterns by memorizing and learn from 
the historical data. The proposed method is also required to solve 
the limitations of the previous methods used. 

B. Phase 2: Analysis And Problem Formulation 

 In Phase 2, the analysis and problem formulation executed 
to identify the best techniques used. Holt Winter, SVM, and 
NLR have improved the orbit propagation model [7][8][35].  
This study shows that although the researchers may not know to 
make physics-based predictions, they can apply learning 
techniques to get the space object's information through 
historical data. Then, the gathered information can develop an 
accurate orbit propagation model [8]. These include state 
estimates, measurement data, and errors for space object details 
and spatial environment [8][35]. 

Deep learning approaches have become one of the fastest-
growing teaching and learning areas for data analysis [36]. It 
also demonstrates the effectiveness and efficiency of real-time 
detection [37]. Thus, in this study, the deep learning approach is 
explored to determine its suitability to improve the orbit 
propagation model's performance or vice versa. 

The categories under deep learning are unsupervised 
learning, supervised learning, and deep hybrid networks [38]. 
The unsupervised learning captures high-order correlations of 
data and analyzes unlabelled data patterns [38][39].  The 
techniques for this category are Deep Belief Networks, Stacked 
Denoising Autoencoders, Deep Boltzmann Machine,  Recurrent 
Neural Network (RNN), etc. [40][41][42]. Meanwhile, 
supervised learning can classify patterns by characterizing the 
classroom's posterior distribution on visible data [38]. The 
techniques used under this category are conditional random 
fields, convolutional neural networks (CNN), time-delay neural 
networks, etc.[43]. Lastly, hybrid networks which applied for 
deep network optimization [38]. 

In this study, techniques that can address time series 
problems identified and the RNN can do so in different 
architectures and approaches [44].  RNN is a type of neural 
network used in predictive modeling with random input 
sequences and an ideal technique for complex tasks [45].  
However, RNN was affected by their gradients either growing 
or shrinking at each step [45].  Therefore, to correct this 
problem, long short-term memory (LSTM) has been introduced 
to overcome fatigue or explosion [46]. LSTM uses hidden units 
with natural behaviors that memorize long-term inputs and learn 
at long-distance dependencies [45].  Also, LSTM is more 
accurate than RNN and proved in a study conducted on space 
shuttle time-series data [47]. LSTM has again proven better than 
RNN in memory as it can handle thousands of discrete time steps 
[44].  For this study, the orbit propagation model needs to be 
improved to perform a longer orbit propagation span.  Therefore, 
the proposed technique has to deal with the long-term data to 
give the solution. LSTM can remember the inputs over a long 
time, making it possible to recognize a sequence of data [48]. 
Therefore, the LSTM was selected to identify and accurately 
predict the long sequential orbital data. 

C. Design And Modelling 

For this study, the proposed model needs to minimize error 
and maintain propagator accuracy despite a longer propagation 
span. The new method is combining the SGP4 Model and LSTM 
module. The LSTM module will work as the extended predictive 
module of the SGP4 model.  

 

Phase 4: Evaluation

Experimental evaluation of the proposed improved model

Phase 3: Design and Modelling

To propose an orbit propagation model using LSTM

Phase 2: Analysis and Problem Formulations

To identify model limitation To identify appropriate prediction technique

Phase 1: Investigation

To investigate orbit propagation model and its farmework
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LSTM is a repetitive neural network architecture. It consists 
of three layers: the input layer, the hidden layer, and the output 
layer [49]. The hidden layer connects to the input and output 
layers. The inner layer of the LSTM consists of blocks, and each 
block has three gates: input, output, and forget gates. This gate 
decides whether to let new inputs in or not, deletes information 
because it is not vital (forget gate) or the output at the current 
time step (output gate). 

The expansion of the LSTM input layer requires 
reorganization of the data. A layer of ReLu activation function 
and dropout method needs to be added to the model to improve 
its performance. In our proposed model, dropout occurs between 
two hidden layers and between the hidden layer and the output 
layer. The dropout value is 20%. It is a type of regularization 
technique used to prevent overfitting and increase exercise time 
in some cases [50]. The last layer (dense layer) defines the 
output that represents the various activities and anomalies. Fig. 
3 shows the development of the LSTM architecture. 

 

Fig. 3. LSTM Module 

For time series prediction, the training data set typically 
consists of single-column data frame values. In this study, the 
values are position (ro_x, ro_y, ro_z) and velocity (vo_x, vo_y, 
vo_z). Each value are formulated as sequence such as, ro_x = 
[ro_x1, ro_x2, ro_x3, ..., ro_xn].  After entering the input, the error 
is calculated through the loss function and then propagated 
through the network to update the remaining iterations' weights. 
Then, the model is compiled using 'adam optimizer,' and the 
error is calculated with the loss function 'mean squared error.' 
This LSTM module developed using Python and Keras.   

D. Phase 4: Evaluation 

 The evaluation of the proposed model is by comparing the 
results with the actual output. The methods used to evaluate and 
validate the improved model's performance are the root mean 
squared error (RMSE), mean absolute percent error (MAPE), 
and accuracy (ACC). The following equation is for the RMSE 
calculation. 

 ���� = �∑ |	
��
|

� )  (9) 

Whereby,  �� is the actual output; �� is predicted output, and 
n is the number of samples used. These functions also can be 
used as an optimization criterion of the improved model. 

Meanwhile, equation (10) and equation (11) are used to evaluate 
the enhanced model's accuracy. 

  
���� = �

� ∑ ���−��
�� �����  � 100%  (10) 

��� = 1 − �
� ∑ |��−��|

|��|
����  � 100%  (11) 

The smaller the RMSE and MAPE score, the better the 
model performance. While the ACC is different as a result is 
higher, the better the performance of the model. At the end of 
this phase, the result will determine whether the enhanced SGP4 
model with the LSTM module is achievable or not. 

IV. EXPERIMENTAL SETUP AND RESULTS 

This section explains the experimental setup of this study. 
For the dataset preparation, the TLE data from the NORAD 
website, and real-time observation data from the Ground 
Station, Malaysia Space Centre are used.  The TLE data 
collected is processed in the SGP4 model. Then, it is compared 
with the real-time observation data to ensure it is valid and 
usable for this study.  Table II shows the results. 

TABLE II.  COMPARISON RESULTS BETWEEN REAL-TIME DATA AND 

THE SGP4 MODEL 

TLE 

Age 

 

Satellite Tracking Time Performance Evaluation 

Real-time SGP4 RMSE Accuracy (%) 

1 day 4:16:05 4:16:16 0.0001 99.93 

7 day 3:39:05 5:21:02 0.0708 53.46 

13 days 3:02:51 4:41:21 0.0684 46.13 

 
Based on the result shown in Table II, the TLE data from the 

SGP4 model is valid for 1-day prediction. The error is increasing 
when the propagation span increased.  It also contributes to the 
RMSE value.  Meanwhile, in terms of accuracy, the value is 
decreased when the propagation span increased.  Therefore, this 
study is valuable if we can minimize error while maintaining the 
accuracy even though the propagation span increased and the 
TLE data is not updated.  

Next, the collected data is processed and trained. The trained 
result is analyzed and evaluated to check whether it can give a 
solution for this study. Fig. 4 shows the process flow of this 
study. 

 

Fig. 4. LSTM-SGP4 model Process Flow. 

 

LSTM Input Layer
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The dataset consists of 43200 data sampling per minute for 
one (1) specific satellite and six (6) variables for 30 days.  Then, 
the dataset is divided into train data (70%) and test data (30%) 
for further analysis. Fig. 5 shows a periodic pattern of X position 
(ro_x), which only the first 1440 observations plotted as it is 
difficult to see detailed features for all data samples. 

 

Fig. 5. X Position (ro_x) for one day. 

Once the developed model is trained, the model's 
performance is evaluated, and the achievement results of the 
model listed in Table III.  

TABLE III.  SUMMARY OF EVALUATION RESULTS 

Position/ 

Velocity 

RMSE(km, 

km/s) 

MAPE 

(%) 

Accuracy 

(%) 

ro_x 133.15 9.61 90.39 

ro_y 69.07 6.14 93.86 
ro_z 133.61 4.46 95.54 

vo_x 0.12 3.91 96.09 

vo_y 0.05 5.48 94.52 

vo_z 0.08 8.35 91.65 

Fig. 6 shows the comparison results between predicted and 
actual X position (ro_x) for the first 1440 observations. 

 

Fig. 6. Comparison between predicted and actual X Position 

Next, Fig. 7 illustrates the predicted and actual X position 
(ro_x) of one (1) satellite pass for day-30, and Table III listed 
the result of the trained model for 30 days propagation span. 

 

Fig. 7. X Position (ro_x) for one day. 

TABLE IV.  30 DAYS PROPAGATION SPAN RESULTS 

Position/ 

Velocity 

RMSE(km, 

km/s) 

MAPE 

(%) 

Accuracy 

(%) 

ro_x 170.64 7.47 92.53 

ro_y 10.92 5.54 94.46 

ro_z 59.08 5.65 94.35 

vo_x 0.21 9.90 90.10 
vo_y 0.02 5.91 94.09 

vo_z 0.07 5.34 94.66 

V. DISCUSSION 

Based on the experiment conducted, the proposed orbit 
propagation model can minimize the error and maintain the 
accuracy even though there is an increase in propagation span. 
The accuracy is more than 90.03%, including the 30-day 
propagation span compared to previous studies [8]. However, 
this cannot be a fact or a basis because the data configuration 
and dataset details might differ from this study. Nevertheless, 
the results indicate various techniques can be considered to 
provide an improved orbit propagation model.  The LSTM 
technique's recommendation is due to its flexibility to deal with 
long-term time-series data and proven to provide accurate and 
reliable results. The performance of the model also maintains 
even though the propagation span increase and more data are 
used. 

VI. CONCLUSION AND FUTURE WORK 

In conclusion, through adapting the LSTM technique, the 
deep learning method can enhance the SGP4 model for orbit 
propagation, even though the data input is not updated and for a 
longer propagation span. The main contributions of this work 
include the following fold. First, we developed the LSTM-SGP4 
model to learn the complex data distribution from the TLE 
dataset. Second, the deep learning model training and selection 
strategy reduce the orbit propagation model's error. Finally, this 
study solves the issue which is challenging to be solved by other 
technique. In the future, this approach will analyze with multiple 
inputs and multiple outputs for a different class of satellites with 
other parameter values. 
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