1,095 research outputs found

    Risk Perception of Cigarette and E-cigarette use during Pregnancy: A Qualitative Postpartum Perspective

    Get PDF
    Aim: The aim of this exploratory qualitative analysis is to assess the perceptions of risks of cigarette and e-cigarette use during pregnancy. Background: An important public health aim is a reduction of smoking at time of delivery (SATOD) from 10.6% to less than 6% by 2022 in the United Kingdom (UK). In order to successfully meet this target, we need to have a better understanding of the perceived risks associated with cigarette smoking. Additionally, the use of e-cigarettes is increasing in the general population, with pregnant women being supported to use such products if it helps them remain smoke free. However, in contrast to cigarette smoking, there is little definitive research assessing the safety of e-cigarette use during pregnancy, with most information disregarding the health of the growing fetus. E-cigarettes are of special interest, given they are an unlicensed product for use during pregnancy, yet women are being supported to use them as a method of harm reduction. A better understanding of perceived risks is essential. Method: Fourteen interviews were conducted one month postpartum with women who smoked during pregnancy and continued to smoke after the birth. Thematic analysis was conducted. Suzanne Froggatt, Nadja Reissland, Judith Covey 2 Findings: Two themes emerged for cigarette smoking; health and justifications. Six themes were identified for e-cigarette use; the unknown, experience, comparison to cigarettes, the product, advice and healthier option. A range of subthemes are discussed. Conclusion: Women provided a range of justifications for continuing to smoke during pregnancy. Women felt e-cigarettes were a riskier option than continuing to smoke

    Discovery of a New Nearby Star

    Get PDF
    We report the discovery of a nearby star with a very large proper motion of 5.06 +/- 0.03 arcsec/yr. The star is called SO025300.5+165258 and referred to herein as HPMS (high proper motion star). The discovery came as a result of a search of the SkyMorph database, a sensitive and persistent survey that is well suited for finding stars with high proper motions. There are currently only 7 known stars with proper motions > 5 arcsec/yr. We have determined a preliminary value for the parallax of 0.43 +/- 0.13 arcsec. If this value holds our new star ranks behind only the Alpha Centauri system (including Proxima Centauri) and Barnard's star in the list of our nearest stellar neighbors. The spectrum and measured tangential velocity indicate that HPMS is a main-sequence star with spectral type M6.5. However, if our distance measurement is correct, the HPMS is underluminous by 1.2 +/- 0.7 mag.Comment: 5 pages, 3 figures. Submitted to ApJ Letter

    Mechanism of action of VP1-001 in cryAB(R120G)-associated and age-related cataracts

    Get PDF
    PurposeWe previously identified an oxysterol, VP1-001 (also known as compound 29), that partially restores the transparency of lenses with cataracts. To understand the mechanism of VP1-001, we tested the ability of its enantiomer, ent-VP1-001, to bind and stabilize αB-crystallin (cryAB) in vitro and to produce a similar therapeutic effect in cryAB(R120G) mutant and aged wild-type mice with cataracts. VP1-001 and ent-VP1-001 have identical physicochemical properties. These experiments are designed to critically evaluate whether stereoselective binding to cryAB is required for activity.MethodsWe compared the binding of VP1-001 and ent-VP1-001 to cryAB using in silico docking, differential scanning fluorimetry (DSF), and microscale thermophoresis (MST). Compounds were delivered by six topical administrations to mouse eyes over 2 weeks, and the effects on cataracts and lens refractive measures in vivo were examined. Additionally, lens epithelial and fiber cell morphologies were assessed via transmission electron microscopy.ResultsDocking studies suggested greater binding of VP1-001 into a deep groove in the cryAB dimer compared with ent-VP1-001. Consistent with this prediction, DSF and MST experiments showed that VP1-001 bound cryAB, whereas ent-VP1-001 did not. Accordingly, topical treatment of lenses with ent-VP1-001 had no effect, whereas VP1-001 produced a statistically significant improvement in lens clarity and favorable changes in lens morphology.ConclusionsThe ability of VP1-001 to bind native cryAB dimers is important for its ability to reverse lens opacity in mouse models of cataracts

    The Factory and The Beehive II. Activity and Rotation in Praesepe and the Hyades

    Get PDF
    Open clusters are collections of stars with a single, well-determined age, and can be used to investigate the connections between angular-momentum evolution and magnetic activity over a star's lifetime. We present the results of a comparative study of the relationship between stellar rotation and activity in two benchmark open clusters: Praesepe and the Hyades. As they have the same age and roughly solar metallicity, these clusters serve as an ideal laboratory for testing the agreement between theoretical and empirical rotation-activity relations at ≈\approx600 Myr. We have compiled a sample of 720 spectra --- more than half of which are new observations --- for 516 high-confidence members of Praesepe; we have also obtained 139 new spectra for 130 high-confidence Hyads. We have collected rotation periods (ProtP_{rot}) for 135 Praesepe members and 87 Hyads. To compare HαH\alpha emission, an indicator of chromospheric activity, as a function of color, mass, and Rossby number RoR_o, we first calculate an expanded set of χ\chi values, with which we can obtain the HαH\alpha to bolometric luminosity ratio, LHα/LbolL_{H\alpha}/L_{bol}, even when spectra are not flux-calibrated and/or stars lack reliable distances. Our χ\chi values cover a broader range of stellar masses and colors (roughly equivalent to spectral types from K0 to M9), and exhibit better agreement between independent calculations, than existing values. We find no difference between the two clusters in their HαH\alpha equivalent width or LHα/LbolL_{H\alpha}/L_{bol} distributions, and therefore take the merged HαH\alpha and ProtP_{rot} data to be representative of 600-Myr-old stars. Our analysis shows that HαH\alpha activity in these stars is saturated for Ro≤0.11−0.03+0.02R_o\leq0.11^{+0.02}_{-0.03}. Above that value activity declines as a power-law with slope β=−0.73−0.12+0.16\beta=-0.73^{+0.16}_{-0.12}, before dropping off rapidly at Ro≈0.4R_o\approx0.4...Comment: 17 pages, 15 figures, Accepted by Ap

    Stellar SEDs from 0.3-2.5 Microns: Tracing the Stellar Locus and Searching for Color Outliers in SDSS and 2MASS

    Full text link
    The Sloan Digital Sky Survey (SDSS) and Two Micron All Sky Survey (2MASS) are rich resources for studying stellar astrophysics and the structure and formation history of the Galaxy. As new surveys and instruments adopt similar filter sets, it is increasingly important to understand the properties of the ugrizJHKs stellar locus, both to inform studies of `normal' main sequence stars as well as for robust searches for point sources with unusual colors. Using a sample of ~600,000 point sources detected by SDSS and 2MASS, we tabulate the position and width of the ugrizJHKs stellar locus as a function of g-i color, and provide accurate polynomial fits. We map the Morgan-Keenan spectral type sequence to the median stellar locus by using synthetic photometry of spectral standards and by analyzing 3000 SDSS stellar spectra with a custom spectral typing pipeline. We develop an algorithm to calculate a point source's minimum separation from the stellar locus in a seven-dimensional color space, and use it to robustly identify objects with unusual colors, as well as spurious SDSS/2MASS matches. Analysis of a final catalog of 2117 color outliers identifies 370 white-dwarf/M dwarf (WDMD) pairs, 93 QSOs, and 90 M giant/carbon star candidates, and demonstrates that WDMD pairs and QSOs can be distinguished on the basis of their J-Ks and r-z colors. We also identify a group of objects with correlated offsets in the u-g vs. g-r and g-r vs. r-i color-color spaces, but subsequent follow-up is required to reveal the nature of these objects. Future applications of this algorithm to a matched SDSS-UKIDSS catalog may well identify additional classes of objects with unusual colors by probing new areas of color-magnitude space.Comment: 23 pages in emulateapj format, 17 figures, 7 tables. Accepted for publication in the Astronomical Journal. To access a high-resolution version of this paper, as well as machine readable tables and an archive of 'The Hammer' spectral typing suite, see http://www.cfa.harvard.edu/~kcovey v2 -- fixed typos in Table 7 (mainly affecting lines for M8-M10 III stars

    The mass-radius relation of young stars from K2

    Full text link
    Evolutionary models of pre-main sequence stars remain largely uncalibrated, especially for masses below that of the Sun, and dynamical masses and radii pose valuable tests of these theoretical models. Stellar mass dependent features of star formation (such as disk evolution, planet formation, and even the IMF) are fundamentally tied to these models, which implies a systematic uncertainty that can only be improved with precise measurements of calibrator stars. We will describe the discovery and characterization of ten eclipsing binary systems in the Upper Scorpius star-forming region from K2 Campaign 2 data, spanning from B stars to the substellar boundary. We have obtained complementary RV curves, spectral classifications, and high-resolution imaging for these targets; the combination of these data yield high-precision masses and radii for the binary components, and hence a dense sampling of the (nominally coeval) mass-radius relation of 10 Myr old stars. We already reported initial results from this program for the young M4.5 eclipsing binary UScoCTIO 5 (Kraus et al. 2015), demonstrating that theoretically predicted masses are discrepant by ~50% for low-mass stars. K2's unique radius measurements allow us to isolate the source of the discrepancy: models of young stars do not predict luminosities that are too low, as is commonly thought, but rather temperatures that are too warm.http://adsabs.harvard.edu/abs/2016AAS...22723612KPublished versio

    First Results from Pan-STARRS1: Faint, High Proper Motion White Dwarfs in the Medium-Deep Fields

    Full text link
    The Pan-STARRS1 survey has obtained multi-epoch imaging in five bands (Pan-STARRS1 gps, rps, ips, zps, and yps) on twelve "Medium Deep Fields", each of which spans a 3.3 degree circle. For the period between Apr 2009 and Apr 2011 these fields were observed 50-200 times. Using a reduced proper motion diagram, we have extracted a list of 47 white dwarf (WD) candidates whose Pan-STARRS1 astrometry indicates a non-zero proper motion at the 6-sigma level, with a typical 1-sigma proper motion uncertainty of 10 mas/yr. We also used astrometry from SDSS (when available) and USNO-B to assess our proper motion fits. None of the WD candidates exhibits evidence of statistically significant parallaxes, with a typical 1-sigma uncertainty of 8 mas. Twelve of these candidates are known WDs, including the high proper motion (1.7"/yr) WD LHS 291. We confirm three more objects as WDs through optical spectroscopy. Based on the Pan-STARRS1 colors, ten of the stars are likely to be cool WDs with 4170 K Teff 5000 K and cooling ages <9 Gyr. We classify these objects as likely thick disk WDs based on their kinematics. Our current sample represents only a small fraction of the Pan-STARRS1 data. With continued coverage from the Medium Deep Field Survey and the 3pi survey, Pan-STARRS1 should find many more high proper motion WDs that are part of the old thick disk and halo.Comment: 33 pages, 8 figures, submitted to Ap

    Galaxies behind the Galactic plane: First results and perspectives from the VVV Survey

    Full text link
    Vista Variables in The Via Lactea (VVV) is an ESO variability survey that is performing observations in near infrared bands (ZYJHKs) towards the Galactic bulge and part of the disk with the completeness limits at least 3 mag deeper than 2MASS. In the present work, we searched in the VVV survey data for background galaxies near the Galactic plane using ZYJHKs photometry that covers 1.636 square degrees. We identified 204 new galaxy candidates by analyzing colors, sizes, and visual inspection of multi-band (ZYJHKs) images. The galaxy candidates colors were also compared with the predicted ones by star counts models considering a more realistic extinction model at the same completeness limits observed by VVV. A comparison of the galaxy candidates with the expected one by Milennium simulations is also presented. Our results increase the number density of known galaxies behind the Milky Way by more than one order of magnitude. A catalog with galaxy properties including ellipticity, Petrosian radii and ZYJHKs magnitudes is provided, as well as comparisons of the results with other surveys of galaxies towards Galactic plane.Comment: 27 pages, 10 figures, 2 tables; in press at The Astronomical Journa

    Young Stellar Object Variability (YSOVAR): Long Timescale Variations in the Mid-Infrared

    Full text link
    The YSOVAR (Young Stellar Object VARiability) Spitzer Space Telescope observing program obtained the first extensive mid-infrared (3.6 & 4.5 um) time-series photometry of the Orion Nebula Cluster plus smaller footprints in eleven other star-forming cores (AFGL490, NGC1333, MonR2, GGD 12-15, NGC2264, L1688, Serpens Main, Serpens South, IRAS 20050+2720, IC1396A, and Ceph C). There are ~29,000 unique objects with light curves in either or both IRAC channels in the YSOVAR data set. We present the data collection and reduction for the Spitzer and ancillary data, and define the "standard sample" on which we calculate statistics, consisting of fast cadence data, with epochs about twice per day for ~40d. We also define a "standard sample of members", consisting of all the IR-selected members and X-ray selected members. We characterize the standard sample in terms of other properties, such as spectral energy distribution shape. We use three mechanisms to identify variables in the fast cadence data--the Stetson index, a chi^2 fit to a flat light curve, and significant periodicity. We also identified variables on the longest timescales possible of ~6 years, by comparing measurements taken early in the Spitzer mission with the mean from our YSOVAR campaign. The fraction of members in each cluster that are variable on these longest timescales is a function of the ratio of Class I/total members in each cluster, such that clusters with a higher fraction of Class I objects also have a higher fraction of long-term variables. For objects with a YSOVAR-determined period and a [3.6]-[8] color, we find that a star with a longer period is more likely than those with shorter periods to have an IR excess. We do not find any evidence for variability that causes [3.6]-[4.5] excesses to appear or vanish within our data; out of members and field objects combined, at most 0.02% may have transient IR excesses.Comment: Accepted to AJ; 38 figures, 93 page
    • …
    corecore