269 research outputs found

    Lebesgue regularity for differential difference equations with fractional damping

    Get PDF
    We provide necessary and sufficient conditions for the existence and unique-ness of solutions belonging to the vector-valued space of sequences �(Z, X) forequations that can be modeled in the formΔu(n)+Δu(n)=Au(n)+G(u)(n)+ (n), n ∈ Z,,>0,≥0,where X is a Banach space, ∈ �(Z, X), A is a closed linear operatorwith domain D(A) defined on X,andG is a nonlinear function. The oper-ator Δdenotes the fractional difference operator of order >0inthesense of Grünwald-Letnikov. Our class of models includes the discrete timeKlein-Gordon, telegraph, and Basset equations, among other differential differ-ence equations of interest. We prove a simple criterion that shows the existenceof solutions assuming that f is small and that G is a nonlinear term

    Well-posedness for degenerate third order equations with delay and applications to inverse problems

    Get PDF
    [EN] In this paper, we study well-posedness for the following third-order in time equation with delay <disp-formula idoperators defined on a Banach space X with domains D(A) and D(B) such that t)is the state function taking values in X and u(t): (-, 0] X defined as u(t)() = u(t+) for < 0 belongs to an appropriate phase space where F and G are bounded linear operators. Using operator-valued Fourier multiplier techniques we provide optimal conditions for well-posedness of equation (0.1) in periodic Lebesgue-Bochner spaces Lp(T,X), periodic Besov spaces Bp,qs(T,X) and periodic Triebel-Lizorkin spaces Fp,qs(T,X). A novel application to an inverse problem is given.The first, second and third authors have been supported by MEC, grant MTM2016-75963-P. The second author has been supported by AICO/2016/30. The fourth author has been supported by MEC, grant MTM2015-65825-P.Conejero, JA.; Lizama, C.; Murillo-Arcila, M.; Seoane Sepúlveda, JB. (2019). Well-posedness for degenerate third order equations with delay and applications to inverse problems. Israel Journal of Mathematics. 229(1):219-254. https://doi.org/10.1007/s11856-018-1796-8S2192542291K. Abbaoui and Y. Cherruault, New ideas for solving identification and optimal control problems related to biomedical systems, International Journal of Biomedical Computing 36 (1994), 181–186.M. Al Horani and A. Favini, Perturbation method for first- and complete second-order differential equations, Journal of Optimization Theory and Applications 166 (2015), 949–967.H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Mathematische Nachrichten 186 (1997), 5–56.U. A. Anufrieva, A degenerate Cauchy problem for a second-order equation. A wellposedness criterion, Differentsial’nye Uravneniya 34 (1998), 1131–1133; English translation: Differential Equations 34 (1999), 1135–1137.W. Arendt and S. Bu, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Mathematische Zeitschrift 240 (2002), 311–343.W. Arendt and S. Bu, Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proceedings of the Edinburgh Mathematical Society 47 (2004), 15–33.W. Arendt, C. Batty and S. Bu, Fourier multipliers for Holder continuous functions and maximal regularity, Studia Mathematica 160 (2004), 23–51.V. Barbu and A. Favini, Periodic problems for degenerate differential equations, Rendiconti dell’Istituto di Matematica dell’Università di Trieste 28 (1996), 29–57.A. Bátkai and S. Piazzera, Semigroups for Delay Equations, Research Notes in Mathematics, Vol. 10, A K Peters, Wellesley, MA, 2005.S. Bu, Well-posedness of second order degenerate differential equations in vector-valued function spaces, Studia Mathematica 214 (2013), 1–16.S. Bu and G. Cai, Periodic solutions of third-order degenerate differential equations in vector-valued functional spaces, Israel Journal of Mathematics 212 (2016), 163–188.S. Bu and G. Cai, Well-posedness of second-order degenerate differential equations with finite delay in vector-valued function spaces, Pacific Journal of Mathematics 288 (2017), 27–46.S. Bu and Y. Fang, Periodic solutions of delay equations in Besov spaces and Triebel–Lizorkin spaces, Taiwanese Journal of Mathematics 13 (2009), 1063–1076.S. Bu and J. Kim, Operator-valued Fourier multipliers on periodic Triebel spaces, Acta Mathematica Sinica 21 (2005), 1049–1056.G. Cai and S. Bu, Well-posedness of second order degenerate integro-differential equations with infinite delay in vector-valued function spaces, Mathematische Nachrichten 289 (2016), 436–451.R. Chill and S. Srivastava, Lp-maximal regularity for second order Cauchy problems, Mathematische Zeitschrift 251 (2005), 751–781.R. Denk, M. Hieber and J. Prüss, R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Memoirs of the American Mathematical Society 166 (2003).O. Diekmann, S. A. van Giles, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations, Applied Mathematical Sciences, Vol. 110, Springer, New York, 1995.K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Vol. 194, Springer, New York, 2000.M. Fabrizio, A. Favini and G. Marinoschi, An optimal control problem for a singular system of solid liquid phase-transition, Numerical Functional Analysis and Optimization 31 (2010), 989–1022.A. Favini and G. Marinoschi, Periodic behavior for a degenerate fast diffusion equation, Journal of Mathematical Analysis and Applications 351 (2009), 509–521.A. Favini and G. Marinoschi, Identification of the time derivative coefficients in a fast diffusion degenerate equation, Journal of Optimization Theory and Applications 145 (2010), 249–269.A. Favini and A. Yagi, Degenerate differential equations in Banach spaces, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 215, Marcel Dekker, New York, 1999.X. L. Fu and M. Li, Maximal regularity of second-order evolution equations with infinite delay in Banach spaces, Studia Mathematica 224 (2014), 199–219.G. C. Gorain, Boundary stabilization of nonlinear vibrations of a flexible structure in a bounded domain in Rn, Journal of Mathematical Analysis and Applications 319 (2006), 635–650.P. Grisvard, Équations différentielles abstraites, Annales Scientifiques de l’école Normale Superieure 2 (1969), 311–395.J. K. Hale and W. Huang, Global geometry of the stable regions for two delay differential equations, Journal of Mathematical Analysis and Applications 178 (1993), 344–362.Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Vol. 1473, Springer, Berlin, 1991.B. Kaltenbacher, I. Lasiecka and M. Pospieszalska, Well-posedness and exponential decay of the energy in the nonlinear Moore-Gibson-Thomson equation arising in high intensity ultrasound, Mathematical Models & Methods in Applied Sciences 22 (2012), 1250035.V. Keyantuo and C. Lizama, Fourier multipliers and integro-differential equations in Banach spaces, Journal of the London Mathematical Society 69 (2004), 737–750.V. Keyantuo and C. Lizama, Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces, Studia Mathematica 168 (2005), 25–50.V. Keyantuo, C. Lizama and V. Poblete, Periodic solutions of integro-differential euations in vector-valued function spaces, Journal of Differential Equations 246 (2009), 1007–1037.C. Lizama, Fourier multipliers and periodic solutions of delay equations in Banach spaces, Journal of Mathematical Analysis and Applications 324 (2006), 921–933.C. Lizama and V. Poblete, Maximal regularity of delay equations in Banach spaces, Studia Mathematica 175 (2006), 91–102.C. Lizama and R. Ponce, Periodic solutions of degenerate differential equations in vector valued function spaces, Studia Mathematica 202 (2011), 49–63.C. Lizama and R. Ponce, Maximal regularity for degenerate differential equations with infinite delay in periodic vector-valued function spaces, Proceedings of the Edinburgh Mathematical Society 56 (2013), 853–871.R. Marchand, T. Mcdevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore–Gibson–Thompson partial differential equation arising in highintensity ultrasound: structural decomposition, spectral analysis, exponential stability, Mathematical Methods in the Applied Sciences 35 (2012), 1896–1929.V. Poblete, Solutions of second-order integro-differential equations on periodic Besov spaces, Proceedings of the Edinburgh Mathematical Society 50 (2007), 477–492.V. Poblete and J. C. Pozo, Periodic solutions of an abstract third-order differential equation, Studia Mathematica 215 (2013), 195–219.J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics, Vol. 87, Birkhäuser, Heidelberg, 1993.G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev type Equations and Degenerate Semigroups of Operators, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2003.L. Weis, Operator-valued Fourier multiplier theorems and maximal Lp-regularity, Mathematische Annalen 319 (2001), 735–758

    Visibility graphs of fractional Wu-Baleanu time series

    Full text link
    [EN] We study time series generated by the parametric family of fractional discrete maps introduced by Wu and Baleanu, presenting an alternative way of introducing these maps. For the values of the parameters that yield chaotic time series, we have studied the Shannon entropy of the degree distribution of the natural and horizontal visibility graphs associated to these series. In these cases, the degree distribution can be fitted with a power law. We have also compared the Shannon entropy and the exponent of the power law fitting for the different values of the fractionary exponent and the scaling factor of the model. Our results illustrate a connection between the fractionary exponent and the scaling factor of the maps, with the respect to the onset of the chaos.J.A. Conejero is supported Ministerio de Economia y Competitividad Grant Project MTM2016-75963-P. Carlos Lizama is supported by CONICYT, under Fondecyt Grant number 1180041. Cristobal Rodero-Gomez is funded by European Commission H2020 research and Innovation programme under the Marie Sklodowska-Curie grant agreement No. 764738.Conejero, JA.; Lizama, C.; Mira-Iglesias, A.; Rodero-Gómez, C. (2019). Visibility graphs of fractional Wu-Baleanu time series. The Journal of Difference Equations and Applications. 25(9-10):1321-1331. https://doi.org/10.1080/10236198.2019.1619714S13211331259-10Anand, K., & Bianconi, G. (2009). Entropy measures for networks: Toward an information theory of complex topologies. Physical Review E, 80(4). doi:10.1103/physreve.80.045102Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509Brzeziński, D. W. (2017). Comparison of Fractional Order Derivatives Computational Accuracy - Right Hand vs Left Hand Definition. Applied Mathematics and Nonlinear Sciences, 2(1), 237-248. doi:10.21042/amns.2017.1.00020Brzeziński, D. W. (2018). Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus. Applied Mathematics and Nonlinear Sciences, 3(2), 487-502. doi:10.2478/amns.2018.2.00038DONNER, R. V., SMALL, M., DONGES, J. F., MARWAN, N., ZOU, Y., XIANG, R., & KURTHS, J. (2011). RECURRENCE-BASED TIME SERIES ANALYSIS BY MEANS OF COMPLEX NETWORK METHODS. International Journal of Bifurcation and Chaos, 21(04), 1019-1046. doi:10.1142/s0218127411029021Edelman, M. (2015). On the fractional Eulerian numbers and equivalence of maps with long term power-law memory (integral Volterra equations of the second kind) to Grünvald-Letnikov fractional difference (differential) equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(7), 073103. doi:10.1063/1.4922834Edelman, M. (2018). On stability of fixed points and chaos in fractional systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(2), 023112. doi:10.1063/1.5016437Gao, Z.-K., Small, M., & Kurths, J. (2016). Complex network analysis of time series. EPL (Europhysics Letters), 116(5), 50001. doi:10.1209/0295-5075/116/50001Iacovacci, J., & Lacasa, L. (2016). Sequential visibility-graph motifs. Physical Review E, 93(4). doi:10.1103/physreve.93.042309Indahl, U. G., Naes, T., & Liland, K. H. (2018). A similarity index for comparing coupled matrices. Journal of Chemometrics, 32(10), e3049. doi:10.1002/cem.3049Kantz, H., & Schreiber, T. (2003). Nonlinear Time Series Analysis. doi:10.1017/cbo9780511755798Lacasa, L., & Iacovacci, J. (2017). Visibility graphs of random scalar fields and spatial data. Physical Review E, 96(1). doi:10.1103/physreve.96.012318Lacasa, L., Luque, B., Ballesteros, F., Luque, J., & Nuño, J. C. (2008). From time series to complex networks: The visibility graph. Proceedings of the National Academy of Sciences, 105(13), 4972-4975. doi:10.1073/pnas.0709247105Lizama, C. (2015). lp-maximal regularity for fractional difference equations on UMD spaces. Mathematische Nachrichten, 288(17-18), 2079-2092. doi:10.1002/mana.201400326Lizama, C. (2017). The Poisson distribution, abstract fractional difference equations, and stability. Proceedings of the American Mathematical Society, 145(9), 3809-3827. doi:10.1090/proc/12895Luque, B., Lacasa, L., Ballesteros, F., & Luque, J. (2009). Horizontal visibility graphs: Exact results for random time series. Physical Review E, 80(4). doi:10.1103/physreve.80.046103Luque, B., Lacasa, L., Ballesteros, F. J., & Robledo, A. (2011). Feigenbaum Graphs: A Complex Network Perspective of Chaos. PLoS ONE, 6(9), e22411. doi:10.1371/journal.pone.0022411Luque, B., Lacasa, L., & Robledo, A. (2012). Feigenbaum graphs at the onset of chaos. Physics Letters A, 376(47-48), 3625-3629. doi:10.1016/j.physleta.2012.10.050May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560), 459-467. doi:10.1038/261459a0Núñez, Á. M., Luque, B., Lacasa, L., Gómez, J. P., & Robledo, A. (2013). Horizontal visibility graphs generated by type-I intermittency. Physical Review E, 87(5). doi:10.1103/physreve.87.052801Ravetti, M. G., Carpi, L. C., Gonçalves, B. A., Frery, A. C., & Rosso, O. A. (2014). Distinguishing Noise from Chaos: Objective versus Subjective Criteria Using Horizontal Visibility Graph. PLoS ONE, 9(9), e108004. doi:10.1371/journal.pone.0108004Robledo, A. (2013). Generalized Statistical Mechanics at the Onset of Chaos. Entropy, 15(12), 5178-5222. doi:10.3390/e15125178Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.xSong, C., Havlin, S., & Makse, H. A. (2006). Origins of fractality in the growth of complex networks. Nature Physics, 2(4), 275-281. doi:10.1038/nphys266West, J., Lacasa, L., Severini, S., & Teschendorff, A. (2012). Approximate entropy of network parameters. Physical Review E, 85(4). doi:10.1103/physreve.85.046111Wu, G.-C., & Baleanu, D. (2013). Discrete fractional logistic map and its chaos. Nonlinear Dynamics, 75(1-2), 283-287. doi:10.1007/s11071-013-1065-7Wu, G.-C., & Baleanu, D. (2014). Discrete chaos in fractional delayed logistic maps. Nonlinear Dynamics, 80(4), 1697-1703. doi:10.1007/s11071-014-1250-3Zhang, J., & Small, M. (2006). Complex Network from Pseudoperiodic Time Series: Topology versus Dynamics. Physical Review Letters, 96(23). doi:10.1103/physrevlett.96.23870

    Carotenoids from persimmon juice processing

    Full text link
    [EN] The aim of this study was the use and revalorization of two persimmon by-products A and B generated in the juice production process. The by-product B resulting from a pectinase enzymatic treatment of peels and pulp to optimize juice extraction was especially suitable for recovery of valuable bioactive carotenoids. The extraction solvents and solvent combinations used were: ethanol, acetone, ethanol/acetone (50:50 v/v) and ethanol/ acetone/hexane (25:25:50 v/v/v). HPLC-DAD analysis detected and identified a total of nine individual carotenoids namely violaxanthin, neoxanthin, antheraxanthin, lutein, zeaxanthin, ß-cryptoxanthin 5,6-epoxide, ß-cryptoxanthin, ¿-carotene, and ß-carotene. ß-cryptoxanthin and ß-carotene represented 49.2% and 13.2% of the total carotenoid content (TCC) in the acetone extract from by-product B. TCC contributed greatly to antioxidant activity of acetone extract derived from this by-product. Pectinase enzymatic treatment of persimmon peels and pulp followed by absolute acetone extraction of carotenoids could be an efficient method to obtain a rich extract in these compounds that could be used as nutraceutical ingredient.This study was supported by Ministerio de Ciencia, Innovacion y Universidades through the funded project 'Simbiosis industrial en el aprovechamiento integral del caqui (Diospyros kaki); Ejemplo de bioeconomia' (CTM2017-88978-R). Sara Gea-Botella thanks the Agencia Estatal de Investigacion la Ayuda para la Formacion de Doctores en Empresas "Doctorados Industriales" (DI-16-08465) through the R+D+i project entitled 'Evaluacion in vitro e in vivo de un extracto procedente de subproductos de la industrializacion del caqui'. The authors wish to thank Mitra Sol Technologies S.L. the given technical assistance.Gea-Botella, S.; Agulló, L.; Martí, N.; Martínez-Madrid, M.; Lizama Abad, V.; Martín-Bermudo, F.; Berná, G.... (2021). Carotenoids from persimmon juice processing. Food Research International. 141:1-8. https://doi.org/10.1016/j.foodres.2020.109882S1814

    Convoluted CC-cosine functions and semigroups. Relations with ultradistribution and hyperfunction sines

    Get PDF
    Convoluted CC-cosine functions and semigroups in a Banach space setting extending the classes of fractionally integrated CC-cosine functions and semigroups are systematically analyzed. Structural properties of such operator families are obtained. Relations between convoluted CC-cosine functions and analytic convoluted CC-semigroups, introduced and investigated in this paper are given through the convoluted version of the abstract Weierstrass formula which is also proved in the paper. Ultradistribution and hyperfunction sines are connected with analytic convoluted semigroups and ultradistribution semigroups. Several examples of operators generating convoluted cosine functions, (analytic) convoluted semigroups as well as hyperfunction and ultradistribution sines illustrate the abstract approach of the authors. As an application, it is proved that the polyharmonic operator (Δ)2n,(-\Delta)^{2^{n}}, nN,n\in {\mathbb N}, acting on L2[0,π]L^{2}[0,\pi] with appropriate boundary conditions, generates an exponentially bounded KnK_{n}-convoluted cosine function, and consequently, an exponentially bounded analytic Kn+1K_{n+1}-convoluted semigroup of angle π2,\frac{\pi}{2}, for suitable exponentially bounded kernels KnK_{n} and $K_{n+1}.

    Efectos del régimen de riego sobre la producción y calidad de la uva en la variedad ‘Bobal’ en Requena

    Get PDF
    En este trabajo se resumen los resultados de un ensayo de dos años de duración llevado a cabo en un viñedo de la variedad ‘Bobal’ plantado en espaldeara y situado en el término municipal de Requena (interior de la provincia de Valencia). Se estudió el efecto de dos regímenes de riego (deficitario y óptimo) frente a un tratamiento de secano. En el tratamiento de más riego, se aportaron 2355 m3/ha llegando a doblar la producción frente al secano (9255 frente a 4434 kg/ha). Sin embargo, el riego aportado necesario para mantener el cultivo en un estado hídrico óptimo durante todo el año, provocó un claro descenso en la concentración de azucares, polifenoles y antocianos de la uva, y parecidos efectos en el vino resultante. Con la estrategia de riego deficitario, se aportaron solamente 768 m3/ha, obteniéndose un incremento productivo frente al secano de un 17%. En comparación al secano, el riego deficitario no afectó a la calidad de la uva, en particular cuando se retrasó la vendimia cerca de una semana con respecto al secano. Los resultados permiten concluir que en la variedad Bobal cultivada en espaldera, el riego aportado a fin de cubrir las necesidades totales del viñedo es a todas luces perjudicial para la calidad de la uva. Para maximizar la calidad del vino, en la variedad ‘Bobal’ en la zona de Utiel-Requena, se recomienda por lo tanto una aportación moderada deficitaria de riego (unos 800 m3/ha) con el fin de incrementar en un 17% la producción frente al secano, manteniendo los estándares de calidad de la uva y el vino
    corecore