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Abstract

Let X be a Banach space. We provide necessary and sufficient conditions for existence and uniqueness of
solutions belonging to the vector-valued space of sequences ℓp(Z, X) for the linearized part of equations that
can be modeled in the form

∆αu(n) + µ∆βu(n) = Au(n) +G(u)(n) + f(n), n ∈ Z, α, β > 0, µ ≥ 0,

where f ∈ ℓp(Z, X), A is a closed linear operator with domain D(A) defined on X and G is a nonlinear term.
The operator ∆γ denotes the fractional difference operator of order γ > 0 in the sense of Grünwald-Letnikov.
Our class of models includes the discrete time Klein-Gordon, telegraph and Basset equations, among others
differential difference equations of interest. We prove a simple criteria that show existence of solutions assuming
that f is a small and that G is at less of quadratic order.

1. Introduction

This paper is concerned with a wide class of mixed evolution equations that can be considered either as
models for partial differential equations that are continuous in space but discrete in time [12], or systems of
difference equations [4, 19, Chapter 3]. An additional feature of the class of models that we will study is that
they admit the possibility of two fractional orders in the discrete variable.

Typical models that are included in this article corresponds to the discrete time Klein-Gordon equation

∆u(n, x) := u(n+ 1, x)− u(n, x) = uxx(n, x)− bu(n, x) + |u(n, x)|c u(n, x), n ∈ Z, x ∈ Ω ⊂ R
N (1.1)

and the discrete time telegraph equation

τ∆2u(n, x) + ∆u(n, x) = ρuxx(n, x), n ∈ Z, τ ≥ 0, ρ > 0, x ∈ J ⊂ R, (1.2)

as well as fractional versions of them [7, 21]. The discrete version of the Basset equation [32, 10]

∆2u(n) + µ∆3/2u(n) + bu(n) = f(n), n ∈ Z, µ, b > 0, (1.3)

will be also included in our framework. The study of the above equations on Z is suggested in order to investigate
the uniqueness and causality of p-summable solutions [11]. More precisely, given a Banach space X , we ask
ourselves for the following problem: Is it possible to characterize solely in terms of the data of a given mixed
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evolution equation, the existence and uniqueness of solutions that belong to the vector-valued space of sequences
ℓp(Z;X) ?.

We have success in solve this open problem for the following abstract model

∆αu(n) + µ∆βu(n) = Au(n) + f(n), n ∈ Z, α, β > 0, µ ≥ 0, (1.4)

where f ∈ ℓp(Z, X), A is a closed linear operator with domain D(A) defined on X and ∆γ denotes the fractional
difference operator of order γ > 0 as defined recently in [1]. Roughly speaking, it corresponds to a slight
variant of the Grünwald-Letnikov derivative. Compare Definition 2.3 below with [33, Section 3.3 formula
(27)]. It is worthwhile to observe that, for instance, the model (1.1) includes the Basset equation (1.3) taking
X = C, A = bI, α = 2 and β = 3/2 whereas it also includes the linear part of the Klein-Gordon equation (1.1)
choosing X = L2(Ω), A = ∂xx − b, α = 1 and µ = 0.

The modeling with fractional difference equations is a recent and promising area of research that has been
developed from different sides of interest. For instance, Atici and Sengul [8] develop some basics results of
discrete fractional calculus. This authors introduce and solve Gompertz fractional difference equation for tumor
growth models. See also [9] for related results in this direction. The methodology used in such discrete fractional
calculus was extended in [29] to the context of abstract models, including in this way the handling of difference
differential equations by methods of functional analysis and operator theory. Studies on qualitative properties,
as for example the existence of positive solutions for discrete fractional systems, have been provided by Goodrich
[14, 22, 23]. Other contributions are due to Ferreira [20], Holm [24], Kovács, Li and Lubich [27], Dassios [15, 17],
Baleanu [16] and Tarasov [34].

Starting with the work of S. Blunck [13], existence and uniqueness of solutions for discrete systems that have
the property of belong to the Lebesgue space of vector-valued sequences has been considered by many authors
[25, 26, 28, 30] and some of them from a numerical point of view [27]. However, none of them have considered
causal solutions, i.e. solutions with domain on Z. On the other hand, some abstract models that are less general
than ours have been recently reported in the literature and analyzed from diverse perspectives. For instance, it
is shown in [1], that the semilinear problem

∆αu(n) = Au(n+ 1) + f(n, u(n)), n ∈ Z, 0 < α ≤ 1, (1.5)

admits almost automorphic solutions whenever the operator A is the generator of a C0-semigroup and f satisfies
Lipschitz conditions of global and local type. We note that in such paper an application to a model of population
of cells is also given. Existence of weighted pseudo almost automorphic solutions to (1.5) have been also
investigated in [6].

This paper is organized as follows: In Section 2, we first recall the notions of UMD-spaces, R-boundedness
and the discrete time Fourier transform defined over the space of distributions. These concepts allow us to
formulate Blunck’s Fourier multiplier theorem for operator-valued symbols on UMD-spaces [13]. In Section 3,
we prove our main result, that is, if

{(1− e−it)α + µ(1− e−it)β}t∈T ⊂ ρ(A), µ ≥ 0, α, β > 0, T := (−π, π),

where ρ(A) denotes the resolvent set of A, then the following assertions are equivalent:

i) For all f ∈ ℓp(Z, X) the problem ∆αu(n) + µ∆βu(n) = Au(n) + f(n), n ∈ Z, has a unique solution in
ℓp(Z, [D(A)]);

ii) M(t) := ((1− e−it)α + µ(1 − e−it)β −A)−1 is an ℓp-multiplier from X to [D(A)];

iii) The set {M(t)}t∈T is R-bounded.

Furthermore in the context of Hilbert spaces a simpler criteria is also provided, replacing the condition (iii)
above by

sup
t∈T

‖M(t)‖ <∞.

As a consequence, we analyze the nonlinear equation

∆αu(n) + µ∆βu(n) = Au(n) +G(u)(n) + g(n), n ∈ Z,
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where g ∈ ℓp(Z, X) and G : ℓp(Z, X) → ℓp(Z, X) are given. We show that if G(0) = G′(0) = 0 and g is small
enough, then the nonlinear equation has at least one solution in ℓp(Z, X). Finally, in section 4, we show, as an
application of our characterization, that for all 0 < α, β < 2 and b > 2α + µ2β we can find ε∗ > 0 such that for
all ε ∈ (0, ε∗), there exists uǫ ∈ ℓp(Z, L

2(R)) that solves the problem

∆αuǫ(n, x) + µ∆βuǫ(n, x) = uǫxx(n, x)− buǫ(n, x) + |uǫ(n, x)|
c
uǫ(n, x) + εf(n, x), n ∈ Z, x ∈ Ω ⊂ R

N ,

for any c > 1.

2. Preliminaries

In this section we recall some concepts about fractional derivatives, the Discrete Time Fourier Transform,
in short, DTFT, and operator-valued Fourier multipliers theorems defined on UMD spaces. For more details
see [5, 18] and the references therein.

Definition 2.1. Let X be a Banach space. X is said to be a UMD space if it has the Unconditional Martingale
Difference property (UMD), in other words, for each p > 1, there exists a constant Cp > 0 such that for any
(fn)n≥0 ⊂ Lp(Ω,Σ, µ;X) and any choice of signs (ξn)n≥0 ⊂ (−1, 1) and any N ∈ Z+ we have the following
estimate ∥∥∥∥∥f0 +

N∑

n=1

ξn(fn − fn−1)

∥∥∥∥∥
Lp(Ω,Σ,µ;X)

≤ Cp ‖fN‖Lp(Ω,Σ,µ;X) .

In what follows, we denote by B(X,Y ) the space of bounded linear operators between Banach spaces X and
Y endowed with the uniform operator topology; when X = Y , we denote it by B(X).

Definition 2.2. Let X and Y be a Banach spaces. A subset of T ⊂ B(X,Y ) is called R-bounded if there is a
constant c ≥ 0 such that

‖(T1x1, . . . , Tnxn)‖R ≤ c ‖(x1, . . . , xn)‖R

for all T1, . . . , Tn ∈ T , x1, . . . , xn ∈ X, n ∈ N where

‖(x1, . . . , xn)‖R :=
1

2n

∑

εj∈{−1,1}n

∥∥∥∥∥∥

n∑

j=1

εjxj

∥∥∥∥∥∥

for x1, . . . , xn ∈ X .

Given u ∈ ℓp(Z;X) and v ∈ ℓ1(Z) we define the convolution product

(u ∗ v)(n) :=

n∑

j=−∞

u(n− j)v(j) =

∞∑

j=0

u(j)v(n− j), n ∈ Z.

For any α ∈ R, we set

kα(n) =





α(α+ 1)...(α+ n− 1)

n!
n ∈ N0,

0 otherwise,

where Γ is the Euler gamma function. Some properties related to the special kernel kα can be found in [2,
Section 2] and [29].

Definition 2.3. Let α > 0 be given and f : Z → X a vector-valued sequence. We define the fractional sum of
order α as follows

∆−αf(n) := (kα ∗ f)(n) =

n∑

j=−∞

kα(n− j)f(j), n ∈ Z

and the fractional difference of order α is defined by

∆αf(n) := (k−α ∗ f)(n) =
n∑

j=−∞

k−α(n− j)f(j) =
∞∑

j=0

k−α(j)f(n− j).
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Given α ∈ R\{−1,−2, ..}, we have kα(n) = Γ(α+n)
Γ(α)Γ(n+1) , where Γ is the Euler function see [[33], formula (27),

with h = 1]. The numbers kα are known as Cesàro numbers of order α. They were introduced by Zygmund in
[35, p. 77] and rediscovered in several instances. The above definition of fractional difference operator of order
α (for n ∈ Z) was first introduced by Abad́ıas and Lizama [1], after previous work of Lizama [29], as follows:

Wαf(n) := (−1)m∆mW−(m−α)f(n), n ∈ Z,

where m := [α] + 1. In the above cited references it is also called Weil difference operator of order α and is
denoted by W instead of ∆. Their equivalence with (2.3) was recently proved in [3, Theorem 2.3].

In what follows, we detail the definition and properties of the DTFT in the vector-valued Lebesgue space
of sequences ℓp(Z, X). We denote by S(Z;X) the space of all vector-valued sequences f : Z → X such that for
each k ∈ N0 there exists Ck with

pk(f) := sup
n∈Z

|n|k‖f(n)‖ < Ck.

We also denote by Cn
per(R;X), n ∈ N0, the space of all 2π-periodic X-valued and n-times continuously differen-

tiable functions defined in R.
Let T := (−π, π) and T0 := (−π, π) \ {0}. We introduce the space of test functions as C∞

per(T;X) :=⋂
n∈N0

Cn
per(R;X) endowed with the topology induced by the countable family of seminorms:

qk(ϕ) = max
k∈N0

sup
t∈[−π,π]

‖ϕ(k)(t)‖.

If X = C we simply denote C∞
per(T;X) = C∞

per(T) and S(Z;X) = S(Z).
We also consider the following spaces of vector-valued distributions

S ′(Z;X) := {T : S(Z) → X : T is linear and continuous}

and
D′(T;X) := {T : C∞

per(T) → X : T is linear and continuous},

equipped with the bounded convergence topology.

Remark 2.4. We can identify ℓp(Z;X) with a subspace of S ′(Z;X) via the mapping

Tf(ψ) := 〈Tf , ψ〉 :=
∑

n∈Z

f(n)ψ(n), ψ ∈ S(Z), (2.1)

and we have Tf ∈ S ′(Z, X). The space C∞
per(T;X) can be also identified with a subspace of D′(T;X) via the

linear map

LS(ϕ) := 〈LS , ϕ〉 :=
1

2π

∫ π

−π

ϕ(t)S(t)dt, ϕ ∈ C∞
per(T),

and we get LS ∈ D′(T;X).

We next recall the following definition.

Definition 2.5. The discrete time Fourier transform F : S(Z;X) → C∞
per(T;X) is given by

Fϕ(t) ≡ ϕ̂(t) :=
∞∑

j=−∞

e−ijtϕ(j), t ∈ (−π, π].

It is an isomorphism whose inverse is defined by

F−1ϕ(n) ≡ ϕ̌(n) :=
1

2π

∫ π

−π

ϕ(t)eintdt, n ∈ Z, (2.2)

where ϕ ∈ C∞
per(T;X).
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Remark 2.6. This isomorphism, allows to define the discrete time Fourier transform (DTFT) between the spaces
of distributions S ′(Z;X) and D′(T;X) as follows

〈FT, ψ〉 ≡ F(T )(ψ) := T̂ (ψ) ≡ 〈T, ψ̌〉, T ∈ S ′(Z;X), ψ ∈ C∞
per(T), (2.3)

whose inverse F−1 : D′(T;X) → S ′(Z;X) is given by

〈F−1L,ψ〉 ≡ F−1(L)(ψ) := Ľ(ψ) ≡ 〈L, ψ̂〉, L ∈ D′(T;X), ψ ∈ S(Z).

In particular, we get

〈FTf , ϕ〉 = 〈Tf , ϕ̌〉 =
∑

n∈Z

f(n)ϕ̌(n), ϕ ∈ C∞
per(T), f ∈ ℓp(Z, X). (2.4)

Observe that the convolution of a distribution T ∈ S ′(Z, X) with a function a ∈ ℓ1(Z) verifies

〈T ∗ a, ϕ〉 := 〈T, a ◦ ϕ〉, ϕ ∈ S(Z),

where

(a ◦ ϕ)(n) :=

∞∑

j=0

a(j)ϕ(j + n).

From [29], the following generation formula holds

∞∑

j=0

kβ(j)zj =
1

(1 − z)β
, β ∈ R, |z| < 1,

see also [35, p.42 formulae (1) and (8)]. In particular, for all α ∈ R+ we have that the radial limit exists and

k̂−α(t) =

∞∑

j=0

k−α(j)e−itj =
1

(1 − e−it)−α
=

(
1− e−it

)α

, t ∈ T0. (2.5)

Observe that k−α ∈ ℓ1(Z) (see also [35, p.42 formula (2)]).
We also recall the following lemma stated in [31] which will be used in the proof of our main result.

Lemma 2.7. Let u, v ∈ ℓp(Z;X) and a ∈ ℓ1(Z). The following assertions are equivalent:

i) (a ∗ u)(n) = v(n) for all n ∈ Z.

ii) < u, φ̌ >=< v, (φ · â−)̌ > for all φ ∈ C∞((−π, π),R), where

(φ · â−)̌(n) :=
1

2π

∫ π

−π

â(−t)φ(t)eintdt, n ∈ Z.

We can now introduce the following notion of ℓp-multiplier.

Definition 2.8. Let X , Y be Banach spaces, 1 < p <∞. A function M ∈ C∞
per(T,B(X,Y )) is an ℓp-multiplier

(from X to Y ) if there exists a bounded operator T : ℓp(Z;X) → ℓp(Z;Y ) such that

∑

n∈Z

(Tf)(n)ϕ̌(n) =
∑

n∈Z

(ϕ ·M−)̌(n)f(n) (2.6)

for all f ∈ ℓp(Z;X) and all ϕ ∈ C∞
per(T). Here

(ϕ ·M−)̌(n) :=
1

2π

∫ π

−π

eintϕ(t)M(−t)dt, n ∈ Z.
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We finally recall the following Fourier multiplier theorem for operator valued symbols due to S. Blunck, see
[13, 5] for more details. This theorem will be crucial for showing our main characterization. Blunck’s theorem
and its converse establishes an equivalence between R-bounded sets and lp-multipliers.

Theorem 2.9. [13, Theorem 1.3] Let p ∈ (1,∞) and let X,Y be UMD spaces. Let M ∈ C∞
per(T,B(X ;Y ))

such that the sets {
M(t), (1 − eit)(1 + eit)M ′(t) : t ∈ T0

}

are both R-bounded. Then M is an ℓp-multiplier (from X to Y ) for 1 < p <∞.

The converse of Blunck’s theorem holds without any restriction on the Banach spaces X , Y in the following
sense.

Theorem 2.10. [13, Proposition 1.4] Let p ∈ (1,∞) and let X,Y be Banach spaces. Let M : T → B(X ;Y ) be
an operator valued function. Suppose that there is a bounded operator TM : lp(Z;X) → lp(Z;Y ) such that (2.6)
holds. Then the set

{M(t) : t ∈ T}

is R-bounded.

3. A characterization of maximal regularity

In this section, we first provide a characterization on the existence and uniqueness of solutions in ℓp(Z; [D(A)])
for the general model

∆αu(n) + λ∆βu(n) = Au(n) + f(n), (3.1)

where α, β > 0, λ ≥ 0, A is a closed linear operator defined on a Banach space X and f : Z → X is a vector-
valued sequence. Recall that the above model is an abbreviated form to write a partial differential equation
which is continuous in space but discrete in time. For example, the equation

u(n+ 2, x)− 2u(n+ 1, x) + u(n, x) + λ[u(n+ 1, x)− u(n, x)] = ∂xxu(n, x) + f(n, x), x ∈ Ω ⊂ R
N ,

fits in the abstract setting of the model (3.1) with α = 2, β = 1 and A = ∂xx.
We introduce the following definition, also called ℓp-well-posedness in the literature.

Definition 3.1. Let 1 < p < ∞. We say that (3.1) has maximal ℓp-regularity if for each f ∈ ℓp(Z;X) there
exists a unique solution u ∈ ℓp(Z; [D(A)]) of (3.1).

We are ready to prove our main result:

Theorem 3.2. Let A be a closed linear operator defined on an UMD space X. Set α, β > 0 and λ ≥ 0. Suppose
that

{(1− e−it)α + λ(1 − e−it)β}t∈T ⊂ ρ(A)

and define M(t) := ((1 − e−it)α + λ(1 − e−it)β −A)−1. Then the following assertions are equivalent

i) (3.1) has maximal ℓp-regularity.

ii) M(t) is an ℓp-multiplier from X to [D(A)].

iii) {M(t)}t∈T is R-bounded.

Proof. We first show (iii) ⇒ (ii). Let {M(t) : t ∈ T} be R-bounded. We will show that the set {(1− eit)(1 +
eit)M(t) : t ∈ T} is also R-bounded. Defining for each t ∈ T, fα(t) := (1 − e−it)α and fβ(t) := (1 − e−it)β it
can be shown that

M ′(t) = −M(t)2(f ′
α(t) + λf ′

β(t)).

Since f ′
α(t) = iαfα(t)

1

1 − eit
, it follows that (1 − eit)(1 + eit)M ′(t) = i(αfα(t) + λβfβ(t))(1 + eit)M(t)2. From

[5, Proposition 2.2.5] we deduce that the set {(1 − eit)(1 + eit)M ′(t) : t ∈ T} is R- bounded and the claim is
proved. Consequently, by Theorem 2.9, we obtain (i).
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The implication (ii) =⇒ (iii) follows immediatly from Theorem 2.10.
Let now show that (i) =⇒ (ii). Let f ∈ ℓp(Z, X) be given. Then there exists a unique uf ∈ ℓp(Z, [D(A)])

solution of (3.1). We define Tα,β : ℓp(Z, X) → ℓp(Z, [D(A)]) the linear operator given by Tα,β(f) = uf . By the
Closed Graph Theorem, we get that Tα,β is bounded. Let ϕ ∈ C∞

per(T), f ∈ ℓp(Z;X) and u = Tα,βf. Since
k−α ∈ ℓ1(Z) we obtain the following identity,

(k−α ◦ Š)(n) =

∞∑

j=0

k−α(j)Š(j + n) =

∞∑

j=0

k−α(j)
1

2π

∫ π

−π

ei(n+j)tS(t)dt

=
1

2π

∫ π

−π

eint
( ∞∑

j=0

eijtk−α(j)
)
S(t)dt

=
1

2π

∫ π

−π

eintk̂−α(−t)S(t)dt = (k̂−α
− · S )̌(n), (3.2)

valid for any S ∈ C∞
per(T,B(X,Y )). Therefore, using the hypothesis and the observation that we have M ∈

C∞
per(T,B(X, [D(A)])) we get

〈Tα,βf, ϕ̌〉 = 〈u, ϕ̌〉 =
∑

n∈Z

ϕ̌(n)u(n) =
∑

n∈Z

1

2π

∫ π

−π

eintϕ(t)u(n)dt

=
∑

n∈Z

1

2π

∫ π

−π

(1− eit)αeintϕ(t)((1 − eit)α + λ(1− e−it)β −A)−1u(n)dt

+ λ
∑

n∈Z

1

2π

∫ π

−π

(1− eit)βeintϕ(t)((1 − eit)α + λ(1 − e−it)β −A)−1u(n)dt

−
∑

n∈Z

1

2π

∫ π

−π

((1− eit)α + λ(1 − e−it)β −A)−1Au(n)eintϕ(t)dt

=
∑

n∈Z

1

2π

∫ π

−π

eintk̂−α(−t)ϕ(t)M(−t)u(n)dt + λ
∑

n∈Z

1

2π

∫ π

−π

eintk̂−β(−t)ϕ(t)M(−t)u(n)dt

−
∑

n∈Z

1

2π

∫ π

−π

eintϕ(t)M(−t)Au(n)dt

= 〈u, ( ̂(k−α
− + λk−β

− ) · ϕ ·M−)̌〉 − 〈Au, (ϕ ·M−)̌〉

= 〈u, (k−α
− + λk−β

− ) ◦ (ϕ ·M−)̌〉 − 〈Au, (ϕ ·M−)̌〉,

where in the last equality we have used (3.2) with S = ϕ ·M−. Therefore

〈u, ϕ̌〉 = 〈(k−α
− + λk−β

− ) ∗ u, (ϕ ·M−)̌〉 − 〈Au, (ϕ ·M−)̌〉 = 〈∆αu+ λ∆βu−Au, (ϕ ·M−)̌〉. (3.3)

We conclude that 〈Tα,βf, ϕ̌〉 = 〈f, (ϕ ·M−)̌〉 and then M(t) is an ℓp-multiplier.

It only remains to prove that (ii) implies (i). We first claim thatN(t) := (1−e−it)α((1−e−it)α+λ(1−e−is)β−
A)−1 and S(t) = (1−e−it)β((1−e−it)α+λ(1−e−it)β−A)−1 are ℓp-multipliers. Indeed, since N(t) = fα(t))M(t)
and S(t) = fβ(t))M(t) where fα(t) = (1− e−it)α and fβ(t) = (1− e−it)β , the R-boundedness of N(t) and S(t)
follows. On the other hand, the identities:

(1 − eit)(1 + eit)N ′(t) = −iαN(t)(1 + eit) + iαN(t)2(1 + eit) + iλβN(t)S(t)(1 + eit)

(1 − eit)(1 + eit)S′(t) = −iβS(t)(1 + eit) + iαS(t)N(t)(1 + eit) + iλβS(t)
2
(1 + eit)

show that the sets {(1 − eit)(1 + eit)N ′(t) : t ∈ T} and {(1 − eit)(1 + eit)S′(t) : t ∈ T} are R-bounded and
then the claim holds by Theorem 2.9. Let f ∈ ℓp(Z;X) be given. By hypothesis, there exists u ∈ ℓp(Z; [D(A)])
such that ∑

n∈Z

u(n)ϕ̌(n) =
∑

n∈Z

(ϕ ·M−)̌(n)f(n) (3.4)
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for all ϕ ∈ C∞
per(T). On the other hand, there exist v, w ∈ ℓp(Z; [D(A)]) such that

∑

n∈Z

v(n)ψ̌(n) =
∑

n∈Z

(ψ ·N−)̌(n)f(n) (3.5)

∑

n∈Z

w(n)η̌(n) =
∑

n∈Z

(η · S−)̌(n)f(n) (3.6)

for all ψ, η ∈ C∞
per(T). Since N(t) = k̂−α(t)M(t) we have

(ψ ·N−)̌(n) =
1

2π

∫ π

−π

eintψ(t)k̂−α(−t)M(−t)dt.

Choosing ϕ(t) = ψ(t)k̂−α(−t) in (3.4) we obtain

〈v, ψ̌〉 = 〈u, (ψ · k̂−α
− )̌〉

and hence by Lemma 2.7 we get that k−α ∗ u ∈ ℓp(Z;X) and

∆αu(n) = k−α ∗ u(n) = v(n), n ∈ Z. (3.7)

Analogously, since S(t) = k̂−β(t)M(t) we can choose ϕ(t) = η(t)k̂−β(−t) in (3.4) and then, by Lemma 2.7 we
get that k−β ∗ u ∈ ℓp(Z;X) and

∆βu(n) = k−β ∗ u(n) = v(n), n ∈ Z. (3.8)

Now, from the identity N(t) + λS(t) = AM(t) + I we obtain after multiplication by eintϕ(t) and then
integration on the interval (−π, π), the identity

(ϕ ·N−)̌(n) + λ(ϕ · S−)̌(n) = A(ϕ ·M−)̌(n) + ϕ̌(n)I,

for all ϕ ∈ C∞
per(T). Then we get

〈f, (ϕ ·N−)̌〉+ 〈f, λ(ϕ · S−)̌〉 = 〈f,A(ϕ ·M−)̌〉+ 〈f, ϕ̌〉.

Replacing (3.4), (3.5) and (3.6) in the above identity we obtain

∑

n∈Z

v(n)ϕ̌(n) + λ
∑

n∈Z

w(n)ϕ̌(n) =
∑

n∈Z

Au(n)ϕ̌(n) +
∑

n∈Z

ϕ̌(n)f(n),

for all ϕ ∈ C∞
per(T). Considering (3.7), (3.8) and replacing ϕk(t) := e−ikt, k ∈ Z we conclude that u satisfies the

equation (3.1).
In order to show uniqueness, we consider u : Z → [D(A)] one solution of (3.1) with f ≡ 0. For all ϕ ∈ C∞

per(T)
and using (3.3) we obtain

〈u, ϕ̌〉 = 〈∆αu−Au, (ϕ ·M−)̌〉 = 0.

Choosing ϕk(t) := e−ikt, k ∈ Z we obtain u ≡ 0. This proves (i) and the theorem.

The following statement follows from the closed graph theorem and Theorem 3.2.

Corollary 3.3. In the context of Theorem 3.2, if condition (iii) is valid, we have u,∆αu,∆βu,Au ∈ lp(Z, X).
Moreover, there exists a constant C > 0 such that

‖∆αu‖p + λ
∥∥∆βu

∥∥
p
+ ‖Au‖p ≤ C ‖f‖p . (3.9)

As a consequence of Theorem 3.2, we easily have a corresponding one in the case of Hilbert spaces, where
R-boundedness is equivalent to norm boundedness [18, Chapter 3, Remark 3.2].
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Corollary 3.4. Let H be a Hilbert space and α, β > 0, λ ≥ 0. Suppose that {(1− e−it)α + λ(1 − e−it)β}t∈T ⊂
ρ(A). The following assertions are equivalent

(i) For all f ∈ ℓp(Z, H) there exists a unique u ∈ ℓp(Z, H) such that u(n) ∈ D(A) for all n ∈ Z and u satisfies
(3.1);

(ii) sup
t∈T

∥∥((1− e−it)α + λ(1− e−it)β −A)−1
∥∥ <∞.

Now, we can consider the nonlinear perturbed version of (3.1) given by

∆αu(n) + λ∆βu(n) = Au(n) +G(u)(n) + ρf(n) (3.10)

where ρ > 0, f ∈ ℓp(Z, X) and G : ℓp(Z, X) → ℓp(Z, X). We can show a result concerning the existence of
ℓp(Z, X)-solutions of (3.10) in terms of the symbol of the equation and the regularity of G.

Theorem 3.5. Let X be a UMD space, 1 < p < ∞, α, β > 0 and λ ≥ 0. Suppose that {(1 − e−it)α + λ(1 −
e−it)β}t∈T ⊂ ρ(A). If the following conditions hold

(i) the set {((1− e−it)α + λ(1 − e−it)β −A)−1}t∈T is R-bounded,

(ii) G is continuously Fréchet differentiable at u = 0, G(0) = 0 and G′(0) = 0,

then there exists ρ∗ such the equation (3.10) has a solution u = uρ ∈ ℓp(Z, X) for each ρ ∈ [0, ρ∗).

Proof. We note that |||u||| := ‖∆αu‖ + λ
∥∥∆βu

∥∥ + ‖Au‖ + ‖u‖ defines a norm in ℓp(Z, [D(A)]) and hence
(ℓp(Z, [D(A)]), |||·|||) becomes a Banach space. Let L : ℓp(Z, [D(A)]) → ℓp(Z, [D(A)]) be defined as (Lu)(n) :=
∆αu(n) + λ∆βu(n)−Au(n).

By Corollary 3.4, since hypothesis (i) holds, we have that the inequality (3.9) holds, and then we have
|||u||| ≤ C ‖Lu‖ for some constant C > 0. Also, by definition of L, we have ‖Lu‖ ≤ |||u|||. Then L defines an
isomorphism. Given ρ ∈ [0, 1), we define:

H [u, ρ] = −Lu+G(u) + ρf

By hypothesis (ii), we have H [0, 0] = 0 and H is continuously differentiable at (0, 0). In addition, H1
(0,0) = −L

which is invertible. Therefore, using the implicit function theorem, we deduce the existence of ρ∗ such that for
all ρ ∈ [0, ρ∗), there exists uρ ∈ ℓp(Z, X) such that H [uρ, ρ] = 0. This proves the theorem.

4. Examples

We verify the conditions provided in Theorem 3.5 in order to show the existence and uniqueness of ℓp(Z, X)
solutions for the following equation

∆αu(n, x) + λ∆βu(n, x) + bu(n, x)−
∂2

∂x2
u(n, x) = |u(n, x)|

c
u(n, x) + εf(n, x) (4.1)

where λ ≥ 0 is fixed, b and c > 1 are real numbers, ε > 0 and f ∈ ℓp(Z, X) is an external force whose size
is controlled by ǫ. Note that the linear part of the equation (4.1) corresponds to the discrete time Telegraph
equation when α = 2, β = 1, b = 0, λ = 1

τ and A = ρ
τ ∂xx. Also, it coincides with the discrete time Klein-Gordon

equation for α = 1, λ = 0 and A = ∂xx − b.
Equation (4.1) can be modeled as (3.10) for Au = u′′ − bu defined on H2(R) and G(u) = |u|

c
u. It is well

known that the operator Bu = u′′ with domain D(B) = H2
0 (R) generates a contraction C0-semigroup on L2(R),

therefore the following estimate for their resolvent operator holds

∥∥(µ−B)−1
∥∥ ≤

1

ℜ(µ)
, for all ℜ(µ) > 0. (4.2)
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Then, for all 0 < α, β ≤ 2 we have

ℜ((1 − e−it)α + λ(1 − e−it)β) = (2− 2 cos(t))
α
2 cos

(
α arctan

(
sin(t)

1− cos(t)

))

+ λ(2 − 2 cos(t))
β
2 cos

(
β arctan

(
sin(t)

1− cos(t)

))

> (2− 2 cos(t))
α
2 cos(

απ

2
) + λ(2 − 2 cos(t))

β
2 cos(

βπ

2
)

> −(2α + λ2β).

As a consequence, for all b ≥ 2α + λ2β we get that (1− e−it)α + λ(1 − e−it)β ∈ ρ(A) and (4.2) shows that

sup
t∈T

∥∥((1− e−it)α + λ(1− e−it)β −A)−1
∥∥ ≤

1

b− (2α + λ2β)
<∞.

Furthermore, G is a Fréchet differentiable function at u = 0 and clearly satisfies that G′(0) = 0 since c > 1.
Then, by Theorem 3.5, we conclude that whenever b > 2α + λ2β there exists a number ε∗ > 0 such that for all
ε ∈ (0, ε∗) there exists a solution uǫ ∈ ℓp(Z, X) of the perturbed fractional damping difference equation (4.1).

Remark 4.1. In particular, this example shows that the discrete Klein-Gordon equation (1.1) admits non-trivial
square-summable solutions defined on Z, for small and square-summable external forcing terms whenever b > 2.
In the case of the generalized discrete Basset equation

∆2u(n) + µ∆βu(n) + bu(n) = f(n), n ∈ Z, µ, b > 0, β > 0,

we obtain that for any f ∈ ℓp(Z), there exists p-summable solutions whenever b > 4 and µ <
b− 4

2β
.

Acknowledgements. C. Lizama has been partially supported by CONICYT - PIA - Anillo ACT1416 and
FONDECYT grant 1140258. M. Murillo-Arcila has been supported by MEC, grant MTM2016-75963-P.

[1] L. Abad́ıas and C. Lizama, Almost automorphic mild solutions to fractional partial difference-differential
equations. Appl. Anal., 95 (6) (2016), 1347-1369.

[2] L. Abad́ıas, C. Lizama, P.J. Miana and M.P. Velasco. Cesàro sums and algebra homomorphisms of bounded
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