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Abstract
In this paper, we study the existence of an S-asymptotically ω-periodic mild solution
of semilinear fractional integro-differential equations in Banach space, where the
nonlinear perturbation is S-asymptotically ω-periodic or S-asymptotically ω-periodic
in the Stepanov sense. A fixed point theorem and the nonlinear Leray-Schauder
alternative theorem are the main tools in carrying out our proof. Some examples are
given to show the efficiency and usefulness of the main findings.
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1 Introduction
The study of the existence of periodic solutions is one of the most interesting and im-
portant topics in the qualitative theory of differential equations, due to its mathemati-
cal interest as well as their applications in physics, control theory, mathematical biology,
among other areas. Some contributions on the existence of periodic solutions for differ-
ential equations have beenmade.Mostly, the environmental change in the real word is not
periodic, but approximately periodic. For this reason, in the past decades many authors
studied several extensions of the concept of periodicity, such as asymptotic periodicity,
almost periodicity, almost automorphy, pseudo almost periodicity, pseudo almost auto-
morphy, etc. and the same concept in the Stepanov sense, one can see [–] for more
details.
The notion of S-asymptotic ω-periodicity, introduced by Henríquez et al. in [, ], is re-

lated to and more general than that of asymptotic periodicity. Since then, it has attracted
the attention of many researchers [–]. Recently, in [], the concept of S-asymptotic
ω-periodicity in the Stepanov sense, which generalizes the notion of S-asymptotic ω-
periodicity, was introduced and the applications to semilinear first-order abstract differ-
ential equations were studied.
Due to their numerous applications in several branches of science, fractional integro-

differential equations have receivedmuch attention in recent years [–]. The properties
of solutions of fractional integro-differential equations have been studied from a different
point of view, e.g., maximal regularity [], positivity and contractivity [], asymptotic
equivalence [], asymptotic periodicity [–], almost periodicity [, ], almost au-
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tomorphy [, ] and so on. To the best of our knowledge, there is no work reported
in literature on S-asymptotic ω-periodicity for fractional integro-differential equations if
the nonlinear perturbation is S-asymptotically ω-periodic in the Stepanov sense. This is
one of the key motivations of this study.
The paper is organized as follows. In Section , some notations and preliminary results

are presented. Section  is divided into two parts. In the first one, Section ., we inves-
tigate the existence and uniqueness of an S-asymptotically ω-periodic mild solution of
semilinear fraction integro-differential equations when the nonlinear perturbation f sat-
isfies the Lipschitz condition. In the second part, Section ., when f is a non-Lipschitz
case, we explore the properties of solutions for the same equation. In Section , we provide
some examples to illustrate the main results.

2 Preliminaries and basic results
Let (X,‖·‖), (Y ,‖·‖Y ) be twoBanach spaces andN,R,R+, andC stand for the set of natural
numbers, real numbers, nonnegative real numbers, and complex numbers, respectively.
In order to facilitate the discussion below, we further introduce the following notations:
• BC(R+,X) (resp. BC(R+ × Y ,X)): the Banach space of bounded continuous functions
from R

+ to X (resp. from R
+ × Y to X) with the supremum norm.

• C(R+,X) (resp. C(R+ × Y ,X)): the set of continuous functions from R
+ to X (resp.

from R
+ × Y to X).

• L(X,Y ): the Banach space of bounded linear operators from X to Y endowed with the
operator topology. In particular, we write L(X) when X = Y .

• Lp(R+,X): the space of all classes of equivalence (with respect to the equality almost
everywhere on R+) of measurable functions f :R→ X such that ‖f ‖ ∈ Lp(R+,R+).

• Lploc(R+,X): stand for the space of all classes of equivalence of measurable functions
f :R+ → X such that the restriction of f to every bounded subinterval of R+ is in
Lp(R+,X).

2.1 Sectorial operators and Riemann-Liouville fractional derivative
Definition . [] A closed and densely defined linear operator A is said to be sectorial
of type ω̃ if there exist  < θ < π/,M > , and ω̃ ∈R such that its resolvent exists outside
the sector

ω̃ + Sθ :=
{
ω̃ + λ : λ ∈C,

∣∣arg(–λ)
∣∣ < θ

}
,∥∥(λI –A)–

∥∥ ≤ M
|λ – ω̃| , λ /∈ ω̃ + Sθ .

The sectorial operators are well studied in the literature, we refer to [] for more details.

Definition . [] Let A be a closed and linear operator with domain D(A) defined on a
Banach space X. We call A the generator of a solution operator if there exist ω̃ ∈ R and a
strong continuous function Sα :R+ → L(X) such that {λα : Reλ > ω̃} ⊂ ρ(A) and

λα–(λα –A
)–x = ∫ ∞


e–λtSα(t)xdt, Reλ > ω̃,x ∈ X.

In this case, Sα(t) is called the solution operator generated by A.

http://www.advancesindifferenceequations.com/content/2014/1/9
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Note that if A is sectorial of type ω̃ with  < θ < π ( – α/), then A is the generator of a
solution operator given by

Sα(t) :=


π i

∫
γ

eλtλα–(λα –A
)– dλ,

where γ is a suitable path lying outside the sector ω̃+Sθ []. Recently, Cuesta [] proved
that if A is a sectorial operator of type ω̃ <  for some  < θ < π ( –α/) ( < α < ),M > ,
then there exists a constant C >  such that

∥∥Sα(t)
∥∥ ≤ CM

 + |ω̃|tα , t ≥ . (.)

Note that∫ ∞




 + |ω̃|tα dt =

|ω̃|–/απ

α sin(π/α)

for  < α < , therefore Sα(t) is integrable on (,∞).
In the rest of this subsection, we list some necessary basic definitions in the theory of

fractional calculus.

Definition . [] The fractional order integral of order α >  with the low limit t > 
for a function f is defined as

Iαf (t) =


	(α)

∫ t

t
(t – s)α–f (s)ds, t > t,α > ,

provided the right-hand side is pointwise defined on [t,∞), where 	 is the gamma func-
tion.

Definition . [] Riemann-Liouville derivative of order α >  with the low limit t > 
for a function f : [t,∞) →R can be written as

Dα
t f (t) =


	(n – α)

dn

dtn

∫ t

t
(t – s)n–α–f (s)ds, t > t,n –  < α < n.

2.2 Compactness criterion and fixed point theorem
First, we recall two useful compactness criteria.
Let h : [,∞) → [,∞) be a continuous nondecreasing function such that h(t) → ∞ as

t → ∞. Define

Ch
(
R

+,X
)
:=

{
u ∈ C

(
R

+,X
)
: lim
t→∞

(
u(t)/h(t)

)
= 

}
endowed with the norm ‖u‖h = supt≥(‖u(t)‖/h(t)).

Lemma . [] A set K ⊆ Ch(R+,X) is relatively compact in Ch(R+,X) if it verifies the
following conditions:

(c) For all b > , the set Kb(t) := {u|[,b] : u ∈ K} is relatively compact in C([,b],X).
(c) limt→∞(‖u(t)‖/h(t)) =  uniformly for u ∈ K .

http://www.advancesindifferenceequations.com/content/2014/1/9
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Lemma . (Simon’s theorem []) Let F ⊂ Lp([,T],X), F is relatively compact in
Lp([,T],X) for  ≤ p < ∞ if and only if
() {∫ t

t
f (t)dt : f ∈ F ,∀ < t < t < T} is relatively compact in X .

() ‖τhf – f ‖Lp([,T–h],X) →  as h→  uniformly for f ∈ F , where (τhf )(t) = f (t + h).

Now, we recall the so-called Zima’s fixed point theorem [] and the Leray-Schauder
alternative theorem [] which will be used in the sequel.
Let (Y ,‖ · ‖Y ,≺,m) denote a Banach space of elements y ∈ Y with a binary relation ‘≺’

and a mappingm : Y → Y such that
(i) the relation ≺ is transitive;
(ii)  ≺ m(u) and ‖m(u)‖Y = ‖u‖Y for all u ∈ Y ;
(iii) the norm ‖ · ‖Y is monotonic, that is, if  ≺ u≺ v, then ‖u‖Y ≤ ‖v‖Y for all u, v ∈ Y .

Theorem . ([] Zima’s fixed point theorem) In the Banach space considered above, let
the operators 	 : Y → Y and B : Y → Y be given with the following properties:
(iv) B is a bounded linear operator with spectral radius r(B) < .
(v) B is increasing, that is, if  ≺ u≺ v, then Bu≺ Bv for all u, v ∈ Y .
(vi) m(	u – 	v)≺ Bm(u – v) for all u, v ∈ Y .

Then the equation 	u = u has a unique solution in Y .

Theorem . ([] Leray-Schauder alternative theorem) Let D be a closed convex subset
of a Banach space X such that  ∈ D. Let F :D →D be a completely continuous map. Then
the set {x ∈D : x = λF(x),  < λ < } is unbounded or the map F has a fixed point in D.

2.3 S-Asymptotic ω-periodicity in the Stepanov sense
For ω > , define

C
(
R

+,X
)
=

{
x ∈ BC

(
R

+,X
)
: lim
t→∞

∥∥x(t)∥∥ = 
}
.

Cω

(
R

+,X
)
=

{
x ∈ BC

(
R

+,X
)
: x is ω-periodic

}
.

Definition . [] A function f ∈ BC(R+,X) is called asymptotically ω-periodic if there
exist g ∈ Cω(R+,X), ϕ ∈ C(R+,X) such that f = g + ϕ. The collection of those functions is
denoted by APω(R+,X).

Definition . [] A function f ∈ BC(R+,X) is said to be S-asymptotically periodic if
there exists ω >  such that limt→∞(f (t + ω) – f (t)) = . In this case, we say that f is S-
asymptotically ω-periodic. The collection of those functions is denoted by SAPω(R+,X).

Definition . [] A continuous function f : R+ × X → X is said to be uniformly S-
asymptotically ω-periodic on bounded sets if for every bounded set K of X, the set
{f (t,x) : t ≥ ,x ∈ K} is bounded and limt→∞(f (t + ω,x) – f (t,x)) =  uniformly in x ∈ K .
Denote by SAPω(R+ ×X,X) the set of such functions.

Definition . [] A continuous function f : R+ × X → X is said to be asymptotically
uniformly continuous on bounded sets if for every ε >  and every bounded set K ⊆ X,
there exist Lε ≥  and δε >  such that ‖f (t,x) – f (t, y)‖ ≤ ε for all t ≥ tε and all x, y ∈ K
with ‖x – y‖ ≤ δε .

http://www.advancesindifferenceequations.com/content/2014/1/9


Xia Advances in Difference Equations 2014, 2014:9 Page 5 of 19
http://www.advancesindifferenceequations.com/content/2014/1/9

We introduce the following composition theorem for an S-asymptotically ω-periodic
function.

Lemma . [] Assume that f ∈ SAPω(R+ ×X,X) is an asymptotically uniformly contin-
uous on bounded sets function. Let u ∈ SAPω(R+,X), then υ(·) = f (·,u(·)) ∈ SAPω(R+,X).

Let p ∈ [,∞). The space BSp(R,X) of all Stepanov bounded functions, with the expo-
nent p, consists of all measurable functions f : R → X such that f b ∈ L∞(R,Lp([, ];X)),
where f b is the Bochner transform of f defined by f b(t, s) := f (t + s), t ∈ R, s ∈ [, ].
BSp(R,X) is a Banach space with the norm []

‖f ‖Sp =
∥∥f b∥∥L∞(R,Lp) = sup

t∈R

(∫ t+

t

∥∥f (τ )∥∥p dτ

)/p

.

It is obvious that Lp(R,X) ⊂ BSp(R,X) ⊂ Lploc(R,X) and BSp(R,X) ⊂ BSq(R,X) for p ≥
q ≥ . We denote by BSp(R,X) the subspace of BSp(R,X) consisting of functions f such
that

∫ t+
t ‖f (s)‖p ds→  as t → ∞.

Definition . [] A function f ∈ BSp(R+,X) is called S-asymptotically ω-periodic in
the Stepanov sense (or Sp-S-asymptotically ω-periodic) if

lim
t→∞

∫ t+

t

∥∥f (s +ω) – f (s)
∥∥p ds = .

Denote by SpSAPω(R+,X) the set of such functions.

It is easy to see that

C
(
R

+,X
) ⊂ APω

(
R

+,X
) ⊂ SAPω

(
R

+,X
) ⊂ SpSAPω

(
R

+,X
)
.

Definition . [] A function f :R+ ×X → X is said to be uniformly S-asymptotically
ω-periodic on bounded sets in the Stepanov sense if for every bounded set B ⊆ X, there
exist positive functions gB ∈ BSp(R+,R) and hB ∈ BSp(R+,R) such that ‖f (t,x)‖ ≤ gB(t) for
all t ∈R

+, x ∈ B and

∥∥f (t +ω,x) – f (t,x)
∥∥ ≤ hB(s) for all s≥ ,x ∈ B.

Denote by SpSAPω(R+ ×X,X) the set of such functions.

Definition . [] A function f : R+ × X → X is said to be asymptotically uniformly
continuous on bounded sets in the Stepanov sense if for every ε >  and every bounded
set B ⊆ X, there exist tε ≥  and δε >  such that

∫ t+

t

∥∥f (s,x) – f (s, y)
∥∥p ds≤ εp

for all t ≥ tε and all x, y ∈ B with ‖x – y‖ ≤ δε .

http://www.advancesindifferenceequations.com/content/2014/1/9
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Lemma . [] Assume that f ∈ SpSAPω(R+ × X,X) is an asymptotically uniformly
continuous on bounded sets in the Stepanov sense function. Let u ∈ SAPω(R+,X), then
υ(·) = f (·,u(·)) ∈ SpSAPω(R+,X).

Lemma . Let {S(t)}t≥ ⊂ L(X) be a strongly continuous family of bounded and lin-
ear operators such that ‖S(t)‖ ≤ φ(t), t ∈ R

+, where φ ∈ L(R+) is nonincreasing. If f ∈
SpSAPω(R+,X), then

(�f )(t) :=
∫ t


S(t – s)f (s)ds ∈ SAPω

(
R

+,X
)
, t ∈ R

+.

Proof For n≤ t ≤ n + , n ∈N, one has

∥∥(�f )(t)
∥∥ =

∫ t



∥∥S(s)∥∥∥∥f (t – s)
∥∥ds

≤
∫ n+


φ(s)

∥∥f (t – s)
∥∥ds

=
n∑

k=

∫ k+

k
φ(s)

∥∥f (t – s)
∥∥ds

≤
n∑

k=

φ(k)
(∫ k+

k

∥∥f (t – s)
∥∥p ds

)/p

≤ (
φ() + φ() + · · · + φ(n)

)‖f ‖Sp
≤

(
φ() +

∫ 


φ(t)dt + · · · +

∫ n

n–
φ(t)dt

)
‖f ‖Sp

≤ (
φ() + ‖φ‖L

)‖f ‖Sp ,
that is, �f is bounded. It is clear that �f is continuous for each t ∈ R

+, whence �f ∈
BC(R+,X). Moreover, note that

(�f )(t +ω) – (�f )(t)

=
∫ t+ω


S(t +ω – s)f (s)ds –

∫ t


S(t – s)f (s)ds

=
∫ ω


S(t +ω – s)f (s)ds +

∫ t+ω

ω

S(t +ω – s)f (s)ds –
∫ t


S(t – s)f (s)ds

=
∫ ω


S(t +ω – s)f (s)ds +

∫ t


S(t – s)

[
f (s +ω) – f (s)

]
ds,

:= I(t) + J(t),

where

I(t) =
∫ ω


S(t +ω – s)f (s)ds, J(t) =

∫ t


S(t – s)

[
f (s +ω) – f (s)

]
ds.

http://www.advancesindifferenceequations.com/content/2014/1/9
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By the hypothesis of φ, one has

∥∥I(t)∥∥ ≤
∫ ω


φ(t +ω – s)

∥∥f (s)∥∥ds≤ φ(t)
∫ ω



∥∥f (s)∥∥ds→ , t → ∞,

then

lim
t→∞

∥∥I(t)∥∥dt = .

On the other hand, since f ∈ SpSAPω(R+,X), there existsm ∈N such that

(∫ t+

t

∥∥f (s +ω) – f (s)
∥∥p ds

)/p

< ε for t ≥ m.

Form ≤ n≤ t ≤ n + , one has

∥∥J(t)∥∥ ≤
∫ t



∥∥S(t – s)
∥∥∥∥f (s +ω) – f (s)

∥∥ds
≤

∫ n


φ(t – s)

∥∥f (s +ω) – f (s)
∥∥ds + ∫ t

n
φ(t – s)

∥∥f (s +ω) – f (s)
∥∥ds

≤
∫ n


φ(n – s)

∥∥f (s +ω) – f (s)
∥∥ds + φ()

∫ t

n

∥∥f (s +ω) – f (s)
∥∥ds

≤
n–∑
k=

∫ k+

k
φ(n – s)

∥∥f (s +ω) – f (s)
∥∥ds + φ()

∫ n+

n

∥∥f (s +ω) – f (s)
∥∥ds

≤
n–∑
k=

φ(n – k – )
∫ k+

k

∥∥f (s +ω) – f (s)
∥∥ds + φ()

∫ n+

n

∥∥f (s +ω) – f (s)
∥∥ds

≤
n–∑
k=

φ(n – k – )
(∫ k+

k

∥∥f (s +ω) – f (s)
∥∥p ds

)/p

+ φ()
(∫ n+

n

∥∥f (s +ω) – f (s)
∥∥p ds

)/p

=
m∑
k=

φ(n – k – )
(∫ k+

k

∥∥f (s +ω) – f (s)
∥∥p ds

)/p

+ φ()
(∫ n+

n

∥∥f (s +ω) – f (s)
∥∥p ds

)/p

+
n–∑

k=m+

φ(n – k – )
(∫ k+

k

∥∥f (s +ω) – f (s)
∥∥p ds

)/p

≤ (
φ(n – ) + φ(n – ) + · · ·

+ φ(n –m – )
)
max
≤k≤m

(∫ k+

k

∥∥f (s +ω) – f (s)
∥∥p ds

)/p

+ φ()
(∫ n+

n

∥∥f (s +ω) – f (s)
∥∥p ds

)/p

+
(
φ(n –m – ) + φ(n –m – ) + · · · + φ()

)
ε

http://www.advancesindifferenceequations.com/content/2014/1/9


Xia Advances in Difference Equations 2014, 2014:9 Page 8 of 19
http://www.advancesindifferenceequations.com/content/2014/1/9

≤
∫ n–

n–m–
φ(t)dt · max

≤k≤m

(∫ k+

k

∥∥f (s +ω) – f (s)
∥∥p ds

)/p

+ φ()
(∫ n+

n

∥∥f (s +ω) – f (s)
∥∥p ds

)/p

+
(

φ() +
∫ n–m–


φ(t)dt

)
ε

≤
∫ n–

n–m–
φ(t)dt · max

≤k≤m

(∫ k+

k

∥∥f (s +ω) – f (s)
∥∥p ds

)/p

+ φ()
(∫ n+

n

∥∥f (s +ω) – f (s)
∥∥p ds

)/p

+
(
φ() + ‖φ‖L

)
ε,

which implies that ‖J(t)‖ →  as t → ∞. So

lim
t→∞

∥∥(�f )(t +ω) – (�f )(t)
∥∥ = .

The proof is complete. �

3 Semilinear fractional integro-differential equation
Consider the semilinear fractional integro-differential equation{

u′(t) =
∫ t


(t–s)α–
	(α–) Au(s)ds + f (t,u(t)), t ∈R

+,
u() = u ∈ X,

(.)

where  < α < , A :D(A) ⊂ X → X is a linear densely defined operator of sectorial type on
a complex Banach space X and f :R+ ×X → X is an appropriate function.
Before starting our main results, we recall the definition of the mild solution to (.).

Definition . [] Assume that A generates a solution operator Sα(t). A function u ∈
BC(R+,X) is called a mild solution of (.) if

u(t) = Sα(t)u +
∫ t


Sα(t – s)f

(
s,u(s)

)
ds, t ∈R

+.

To study (.), we require the following assumptions:

(H) A is a sectorial operator of type ω̃ <  with  < θ < π ( – α/).
(H) f ∈ SAPω(R+ ×X,X).
(H′

) f ∈ SpSAPω(R+ ×X,X), p≥ .
(H) f satisfies the Lipschitz condition∥∥f (t,u) – f (t, v)

∥∥ ≤ Lf ‖u – v‖, u, v ∈ X, t ∈ R
+.

(H) f satisfies the Lipschitz condition∥∥f (t,u) – f (t, v)
∥∥ ≤ Lf (t)‖u – v‖, u, v ∈ X, t ∈R

+,

where Lf ∈ BSp(R+,R+).
(H) f satisfies the Lipschitz condition∥∥f (t,u) – f (t, v)

∥∥ ≤ Lf (t)‖u – v‖, u, v ∈ X, t ∈R
+,

where Lf ∈ BSp(R+,R+).

http://www.advancesindifferenceequations.com/content/2014/1/9
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(H) f is asymptotically uniformly continuous on bounded sets.
(H′

) f is asymptotically uniformly continuous on bounded sets in the Stepanov sense.

3.1 Lipschitz case
In this subsection, we study the existence and uniqueness of S-asymptotically ω-periodic
mild solution of (.) when f satisfies the Lipschitz condition.
If f (t,u) is uniformly Lipschitz continuous at u, i.e., (H) holds, we reach the following

claim.

Theorem . Assume that (H), (H) (or (H′
)), (H) hold, then (.) has a unique mild

solution u(t) ∈ SAPω(R+,X) if CM|ω̃|–/απLf < α sin(π/α).

Proof Define the operator F : SAPω(R+,X) → SAPω(R+,X) by

(Fu)(t) = Sα(t)u +
∫ t


Sα(t – s)f

(
s,u(s)

)
ds, t ∈R

+. (.)

By (.), one has limt→∞ ‖Sα(t)u‖ = , so Sα(t)u ∈ C(R+,X) ⊂ SAPω(R+,X). By (H),
if (H) holds, f (·,u(·)) ∈ SAPω(R+,X) ⊂ SpSAPω(R+,X) by Lemma ., and if (H′

) holds,
f (·,u(·)) ∈ SpSAPω(R+,X) by Lemma .. Hence F is well defined by Lemma ..
Moreover, let u, v ∈ SAPω(R+,X), one has

∥∥(Fu)(t) – (Fv)(t)
∥∥ ≤

∫ t



∥∥Sα(t – s)
∥∥∥∥f (s,u(s)) – f

(
s, v(s)

)∥∥ds
≤ Lf

∫ t



∥∥Sα(t – s)
∥∥∥∥u(s) – v(s)

∥∥ds
≤ Lf ‖u – v‖

∫ t



∥∥Sα(s)
∥∥ds

≤ Lf ‖u – v‖
∫ t



CM
 + |ω̃|sα ds

≤ CM|ω̃|–/απLf
α sin(π/α)

‖u – v‖,

by the Banach contraction mapping principle,F has a unique fixed point in SAPω(R+,X),
which is the unique SAPω mild solution to (.). �

Theorem . Assume that (H), (H) (or (H′
)), (H) hold and

CM
(
 +

|ω̃|–/απ

α sin(π/α)

)
‖Lf ‖Sp < , (.)

then (.) has a unique mild solution u(t) ∈ SAPω(R+,X).

Proof Define the operator F as in (.). If (H) holds, then f ∈ SAPω(R+ × X,X) ⊂
SpSAPω(R+ × X,X). Since (H) holds, f is asymptotically uniformly continuous on
bounded sets in the Stepanov sense, so f (·,u(·)) ∈ SpSAPω(R+,X) by Lemma .. If (H′

)
holds, f (·,u(·)) ∈ SpSAPω(R+,X) by Lemma .. Hence F is well defined by Lemma ..
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For u, v ∈ SAPω(R+,X), one has

∥∥(Fu)(t) – (Fv)(t)
∥∥ ≤

∫ t



∥∥Sα(t – s)
∥∥∥∥f (s,u(s)) – f

(
s, v(s)

)∥∥ds
≤

∫ t



CM
 + |ω̃|(t – s)α

Lf (s)ds · ‖u – v‖.

• If t =m ∈N, in this case

∫ t




 + |ω̃|(t – s)α

Lf (s)ds =
∫ m




 + |ω̃|(m – s)α

Lf (s)ds

=
m–∑
k=

∫ k+

k


 + |ω̃|(m – s)α

Lf (s)ds

≤
m–∑
k=


 + |ω̃|(m – k – )α

∫ k+

k
Lf (s)ds

≤
m–∑
k=


 + |ω̃|(m – k – )α

(∫ k+

k
Lf (s)p ds

)/p

≤
[
 +

(∫ 


+

∫ 


+ · · · +

∫ m–

m–

)


 + |ω̃|tα dt
]
‖Lf ‖Sp

≤
(
 +

∫ ∞




 + |ω̃|tα dt

)
‖Lf ‖Sp

≤
(
 +

|ω̃|–/απ

α sin(π/α)

)
‖Lf ‖Sp . (.)

• If t =m – h, where  < h < . In this general case,

∫ t




 + |ω̃|(t – s)α

Lf (s)ds =
∫ m–h




 + |ω̃|(m – h – s)α

Lf (s)ds

=
∫ m

h


 + |ω̃|(m – s)α

Lf (s – h)ds

=
∫ m




 + |ω̃|(m – s)α

L̃f (s)ds

≤
(
 +

|ω̃|–/απ

α sin(π/α)

)
‖̃Lf ‖Sp ,

where L̃f is defined by

L̃f (s) =

{
, ≤ s < h,
Lf (s – h), s≥ h,

then ‖̃Lf ‖Sp = ‖Lf ‖Sp . So we infer that

∫ t




 + |ω̃|(t – s)α

Lf (s)ds≤
(
 +

|ω̃|–/απ

α sin(π/α)

)
‖Lf ‖Sp . (.)
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By (.), (.), one has

∥∥(Fu)(t) – (Fv)(t)
∥∥ ≤ CM

(
 +

|ω̃|–/απ

α sin(π/α)

)
‖Lf ‖Sp‖u – v‖. (.)

By the Banach contractionmapping principle,F has a unique fixed point in SAPω(R+,X),
which is the unique SAPω mild solution to (.). �

In next results, we relax condition (.) to study the existence and uniqueness of SAPω

mild solution of (.).

Theorem . Assume that (H), (H) (or (H′
)), (H) hold and the integral

∫ t
 Lf (s)ds ex-

ists for all t ∈R
+. Then (.) has a unique mild solution u(t) ∈ SAPω(R+,X).

Proof Define an equivalent norm on SAPω(R+,X) as ‖f ‖c = supt∈R+{e–cλ(t)‖f ‖}, where c >
MC and λ(t) =

∫ t
 Lf (τ )dτ . Define the operator F as in (.). Let u, v ∈ SAPω(R+,X), one

has

∥∥(Fu)(t) – (Fv)(t)
∥∥ ≤

∫ t



∥∥Sα(t – s)
∥∥∥∥f (s,u(s)) – f

(
s, v(s)

)∥∥ds
≤

∫ t



CM
 + |ω̃|(t – s)α

Lf (s)
∥∥u(s) – v(s)

∥∥ds
≤ CM‖u – v‖c

∫ t


Lf (s)ecλ(s) ds

= CM‖u – v‖c
∫ t


λ′(s)ecλ(s) ds

≤ CM
c

‖u – v‖cecλ(t),

consequently,

‖Fu –Fv‖c ≤ CM
c

‖u – v‖c.

Since c > MC, F is a contraction and then it has a unique fixed point u(t), which is the
unique SAPω mild solution to (.). �

Theorem . Assume that (H), (H) (or (H′
)), (H) hold, then (.) has a unique mild

solution u(t) ∈ SAPω(R+,X).

Proof Define the operator F as in (.), then F is a map from SAPω(R+,X) into
SAPω(R+,X). Moreover, F is continuous by (.). Define the map B on BC(R+,R) by

(Bα)(t) = CM
∫ t




 + |ω̃|(t – s)α

Lf (s)α(s)ds, t ∈ R
+. (.)

It is clear that B is a bounded linear operator from BC(R+,R) into BC(R+,R).

http://www.advancesindifferenceequations.com/content/2014/1/9
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First, we will show that B is a compact operator. For each a≥  and each α ∈ BC(R+,R)
with ‖α‖ ≤ , define the functions

w(α)(t) =

{
CM

∫ t



+|ω̃|(t–s)α Lf (s)α(s)ds,  ≤ t ≤ a,

CM
∫ a



+|ω̃|(t–s)α Lf (s)α(s)ds, t ≥ a,

and

w(α)(t) =

{
,  ≤ t ≤ a,
CM

∫ t
a


+|ω̃|(t–s)α Lf (s)α(s)ds, t ≥ a.

It follows from the Ascoli-Arzelá theorem in the space C(R+,R) that the set Ka = {w(α) :
‖α‖ ≤ } is relatively compact in C(R+,R), and therefore in BC(R+,R).
Since Lf ∈ BSp(R+,R), for each ε > , take a ≥  such that for t ≥ a,

sup
r≥a

(∫ r+

r
Lf (s)p ds

)/p

< ε.

For a +m ≤ t < a +m + ,m ∈ N, one has

∣∣w(α)(t)
∣∣

= CM
∫ a+m

a


 + |ω̃|(t – s)α

Lf (s)
∣∣α(s)∣∣ds +CM

∫ t

a+m


 + |ω̃|(t – s)α

Lf (s)
∣∣α(s)∣∣ds

≤ CM
m–∑
k=

∫ a+k+

a+k


 + |ω̃|(t – s)α

Lf (s)
∣∣α(s)∣∣ds +CM

∫ t

a+m
Lf (s)

∣∣α(s)∣∣ds
≤ CM

m–∑
k=

∫ a+k+

a+k


 + |ω̃|(a +m – s)α

Lf (s)ds +CM
∫ a+m+

a+m
Lf (s)ds

≤ CM
m–∑
k=


 + |ω̃|(m – k – )α

∫ a+k+

a+k
Lf (s)ds +CM

∫ a+m+

a+m
Lf (s)ds

≤ CM
m–∑
k=


 + |ω̃|(m – k – )α

(∫ a+k+

a+k
Lf (s)p ds

)/p

+CM
(∫ a+m+

a+m
Lf (s)p ds

)/p

≤ CM
∫ m–




 + |ω̃|tα dt · sup

r≥a

(∫ r+

r
Lf (s)p ds

)/p

+CM
(∫ a+m+

a+m
Lf (s)p ds

)/p

≤ CM|ω̃|–/απ

α sin(π/α)
· sup
r≥a

(∫ r+

r
Lf (s)p ds

)/p

+CM
(∫ a+m+

a+m
Lf (s)p ds

)/p

,

then |w(α)t| ≤ ε. Since Bα(t) = w(α)(t) +w(α)(t) for t ∈R+, one has

{
B(α) : ‖α‖ ≤ 

} ⊆ Ka +
{
ϕ : ϕ ∈ BC

(
R

+,R
)
,‖ϕ‖ ≤ ε

}
,

which implies that {B(α) : ‖α‖ ≤ } is relatively compact, so B is a compact operator.More-
over, it follows from the Gronwall-Bellman lemma that the point spectrum σp(B) = {},
which implies that the spectral radius of B is equal to zero since B is a compact operator.
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Consider the Banach space Y = BC(R+,R) equipped with both the relation ≺ and the
mappingm : BC(R+,R)→ BC(R+,R) defined by: if u, v ∈ BC(R+,R)

u≺ v if and only if
∥∥u(t)∥∥ ≤ ∥∥v(t)∥∥ ∀t ∈R

+,

and (m(u))(t) = sup≤s≤t ‖u(s)‖. It is easy to check that conditions (i), (ii), (iii) are satisfied.
Let u, v ∈ BC(R+,R), one has

∥∥(Fu)(t) – (Fv)(t)
∥∥ ≤ CM

∫ t




 + |ω̃|(t – s)α

Lf (s)
∥∥u(s) – v(s)

∥∥ds,
hence m(F (u) – F (v)) ≺ Bm(u – v), and B is increasing with spectral radius r(B) < . By
Theorem ., F has a unique fixed point in BC(R+,R), which is the unique SAPω mild
solution to (.). �

3.2 Non-Lipschitz case
In this subsection, we study the existence of S-asymptotically ω-periodic mild solution of
(.) when f does not satisfy the Lipschitz condition.
The following existence result is based upon the nonlinear Leray-Schauder alternative

theorem.

Theorem . Assume that (H), (H), (H) hold (or (H), (H′
), (H

′
) hold) and satisfy the

following conditions:

(A) There exists a continuous nondecreasing function W : [, +∞) → [, +∞) such that
‖f (t,u)‖ ≤ W (‖u‖) for all t ∈R

+, u ∈ X .
(A) For each ν > , limt→∞ 

h(t)
∫ t


W (νh(s))
+|ω̃|(t–s)α ds = .

(A) For each ε > , there exists δ >  such that for u, v ∈ Ch(R+,X), ‖u – v‖h ≤ δ implies
that ∫ t



‖f (s,u(s)) – f (s, v(s))‖
 + |ω̃|(t – s)α

ds≤ ε for all t ∈R
+.

(A) For all a,b ∈R
+, a≤ b and r ≥ , the set {f (s,u) : a ≤ s≤ b,u ∈ X,‖u‖ ≤ r} is relatively

compact in X .
(A) lim infξ→∞ ξ

β(ξ ) > , where β(ν) = ‖σν‖h and

σν(t) :=
∥∥Sα(·)u

∥∥ +CM
∫ t



W (νh(s))
 + |ω̃|(t – s)α

ds, t ≥ ,

C,M are constants given in (.).

Then (.) has a mild solution u(t) ∈ SAPω(R+,X).

Proof Define 	 : Ch(R+,X)→ C(R+,X) by

(	u)(t) = Sα(t)u +
∫ t


Sα(t – s)f

(
s,u(s)

)
ds, t ∈R

+.

Next, we prove that 	 has a fixed point in SAPω(R+,X). We divide the proof into several
steps.

http://www.advancesindifferenceequations.com/content/2014/1/9
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(i) For x ∈ Ch(R+,X), by (A), one has

‖	u(t)‖
h(t)

≤ CM
h(t)

‖u‖ + CM
h(t)

∫ t



‖f (s,u)‖
 + |ω̃|(t – s)α

ds

≤ CM
h(t)

‖u‖ + CM
h(t)

∫ t



W (‖u‖hh(s))
 + |ω̃|(t – s)α

ds.

It follows from (A) that 	 : Ch(R+,X)→ Ch(R+,X).
(ii) 	 is continuous. In fact, for each ε > , by (A), there exits δ > , for u, v ∈ Ch(R+,X)

and ‖u – v‖h ≤ δ, one has

‖	u – 	v‖ ≤
∫ t



∥∥Sα(t – s)
∥∥∥∥f (s,u(s)) – f

(
s, v(s)

)∥∥ds
≤ CM

∫ t



‖f (s,u(s)) – f (s, v(s))‖
 + |ω̃|(t – s)α

ds.

Take into account that h(t) ≥ , by (A)

‖	u – 	v‖
h(t)

≤ CMε,

which implies that ‖	u – 	v‖h ≤ CMε, so 	 is continuous.
(iii) 	 is completely continuous. Set Br(Z) for the closed ball with center at  and radius

r in the space Z. Let V = 	(Br(Ch(R+,X))) and v = 	(u) for u ∈ Br(Ch(R+,X)).
Initially, we prove that Vb(t) is a relatively compact subset of X for each t ∈ [,b], here

Vb(t) = {v(t), v ∈ V , t ∈ [,b]}. Since

v(t) = Sα(t)u +
∫ t


Sα(s)f

(
t – s,u(t – s)

)
ds ∈ Sα(t)u + tc(K),

where c(K) denotes the convex hull of K and K = {Sα(s)f (ξ ,u) :  ≤ s ≤ t,  ≤ ξ ≤ t,‖u‖ ≤
r}. Using the fact that Sα(·) is strong continuous and (A), we infer that K is a relatively
compact set, and Vb(t)⊆ Sα(t)u + tc(K) is also a relatively compact set.
Next, we show that Vb is equicontinuous. In fact,

v(t + s) – v(t) =
(
Sα(t + s) – Sα(t)

)
u +

∫ t+s

t
Sα(t + s – ξ )f

(
ξ ,u(ξ )

)
dξ

+
∫ t



(
Sα(ξ + s) – Sα(ξ )

)
f
(
t – ξ ,u(t – ξ )

)
dξ .

For each ε > , we can choose δ >  such that∥∥∥∥∫ t+s

t
Sα(t + s – ξ )f

(
ξ ,u(ξ )

)
dξ

∥∥∥∥ ≤ CM
∫ t+s

t

W (rh(ξ ))
 + |ω̃|(t + s – ξ )α

dξ ≤ ε


for s ≤ δ.

Moreover, since {f (t – ξ ,u(t – ξ )) :  ≤ ξ ≤ t,u ∈ Br(Ch(R+,X))} is a relatively compact set
and Sα(·) is strong continuous, we can choose δ > , δ >  such that

∥∥(
Sα(t + s) – Sα(t)

)
u

∥∥ ≤ ε


for s≤ δ
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and ∥∥(
Sα(ξ + s) – Sα(ξ )

)
f
(
t – ξ ,u(t – ξ )

)∥∥ ≤ ε

(t + )
for s ≤ δ.

So, ‖v(t + s) – v(t)‖ ≤ ε for |s| ≤ min{δ, δ, δ} with t + s ≥  and for all u ∈ Br(Ch(R+,X)).
Finally, by (A), one has

‖v(t)‖
h(t)

≤ CM
h(t)

‖u‖ + CM
h(t)

∫ t



W (rh(s))
 + |ω̃|(t – s)α

ds→ , t → ∞,

and this convergence is independent of u ∈ Br(Ch(R+,X)). Hence V satisfies (c), (c) of
Lemma ., which completes the proof that V is a relatively compact set in Ch(R+,X).
(iv) If uλ is a solution of the equation uλ = λ	(uλ) for some  < λ < , then

∥∥uλ
∥∥ = λ

∥∥∥∥Sα(t)u +
∫ t


Sα(t – s)f

(
s,uλ

)
ds

∥∥∥∥
≤ ∥∥Sα(·)u

∥∥ +CM
∫ t



W (‖uλ‖hh(s))
 + |ω̃|(t – s)α

ds

≤ β
(∥∥uλ

∥∥
h

)
h(t).

Hence, one has

‖uλ‖h
β(‖uλ‖h) ≤ 

and by (A), we conclude that the set {uλ : uλ = λ	(uλ),λ ∈ (, )} is bounded.
(v) If follows from Lemmas ., . and . that 	(SAPω(R+,X)) ⊆ SAPω(R+,X); con-

sequently, we consider 	 : SAPω(R+,X) → SAPω(R+,X). Using (i)-(iii), we have that the
map is completely continuous. By (iv) and Theorem ., we deduce that	 has a fixed point
u ∈ SAPω(R+,X).
Let un be a sequence in SAPω(R+,X) such that it converges to u in the norm Ch(R+,X).

For ε > , let δ >  be the constant in (A), there exists n ∈ N such that ‖un – u‖h ≤ δ for
all n≥ n. For n≥ n,

‖	un – 	u‖ ≤
∫ t



∥∥Sα(t – s)
∥∥∥∥f (s,un(s)) – f

(
s,u(s)

)∥∥ds
≤ CM

∫ t



‖f (s,un(s)) – f (s,u(s))‖
 + |ω̃|(t – s)α

ds ≤ CMε.

Hence, (	un)n converges to	u = u uniformly in [,∞). This implies that u ∈ SAPω(R+,X)
and completes the proof. �

Corollary . Assume that (H), (H) (or (H′
)) hold and satisfy the following conditions:

(a) f (t, ) = q(t).
(b) f satisfies the Hölder-type condition∥∥f (t,u) – f (t, v)

∥∥ ≤ C‖u – v‖α , u, v ∈ X, t ∈R
+,

where  < α < , C >  is a constant.
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(c) For all a,b ∈R
+, a ≤ b and r ≥ , the set {f (s,u) : a ≤ s≤ b,u ∈ X,‖u‖ ≤ r} is

relatively compact in X .
Then (.) has a mild solution u(t) ∈ SAPω(R+,X).

Proof By (b), it is easy to see that (H), (H′
) hold. Let C = ‖q‖ and W (ξ ) = C + Cξ

α ,
then (A) is satisfied. Take a function h such that supt∈R+

∫ t


h(s)α
+|ω̃|(t–s)α ds := C < ∞, it is not

difficult to see that (A) is satisfied. To verify (A), note that for each ε > , there exists
 < δ < ( ε

CC
)/α such that for every u, v ∈ Ch(R+,X), ‖u – v‖h ≤ δ implies that

∫ t



‖f (s,u(s)) – f (s, v(s))‖
 + |ω̃|(t – s)α

ds≤
∫ t



Ch(s)α‖u – v‖α
h

 + |ω̃|(t – s)α
ds≤ CCδ

α ≤ ε for all t ∈R
+.

On the other hand, (A) can be easily verified using the definition ofW . By Theorem .,
(.) has a mild solution u(t) ∈ SAPω(R+,X). �

4 Examples
In this section, we provide some examples to illustrate our main results.

Example . Consider the following fractional differential equation:⎧⎪⎨⎪⎩
∂α
t u(t,x) = ∂

x u(t,x) –μu(t,x) + ∂α–
t (

∫ x
 ηa(t)u(t, ξ )dξ ), t ∈R+,x ∈ [,π ],

u(t, ) = u(t,π ) = , t ≥ ,
u(,x) = u(x), x ∈ [,π ],

(.)

where μ > , u ∈ L[,π ], a ∈ SAPω(R+,R). In what follows we consider X = L[,π ] and
let A be the operator given by

Au = u′′ –μu

with domain

D(A) =
{
u ∈ X,u′′ ∈ X,u() = u(π ) = 

}
.

It is well know that A is sectorial of type ω̃ = –μ <  []. Equation (.) can be expressed
as an abstract system of the form (.), where u(t)(x) = u(t,x) for t ∈ R

+, x ∈ [,π ], and
f (t,φ)(ξ ) = ηa(t)

∫ ξ

 φ(τ )dτ for t ∈R
+, ξ ∈ [,π ]. Moreover, one has

∥∥f (t,φ)∥∥L ≤ π |η|∣∣a(t)∣∣‖φ‖L , t ≥ ,φ ∈ X,∥∥f (t +ω,φ) – f (t,φ)
∥∥
L ≤ π |η|∣∣a(t +ω) – a(t)

∣∣‖φ‖L , t ≥ ,φ ∈ X,

since a ∈ SAPω(R+,R), we deduce that f ∈ SAPω(R+ ×X,X). From

∥∥f (t,φ) – f (t,φ)
∥∥
L ≤ π |η|∣∣a(t)∣∣‖φ – φ‖L

≤ π |η|‖a‖‖φ – φ‖L , t ≥ ,φ,φ ∈ X,

so (H) holds with Lf = π |η|‖a‖. If |η| is small enough, (.) has a unique mild solution
u ∈ SAPω(R+,X) by Theorem ..
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Example . Consider the following fractional differential equation:

⎧⎪⎨⎪⎩
∂α
t u(t,x) = ∂

x u(t,x) –μu(t,x) + ∂α–
t F(t,u)(x), t ∈R

+,x ∈ [,π ],
u(t, ) = u(t,π ) = , t ≥ ,
u(,x) = u(x), x ∈ [,π ],

(.)

where μ > , u ∈ L[,π ], F(t,u)(x) = e–λt| ∫ x
 u(t, τ )dτ |ϑ sinx, ϑ ∈ (, ). Let X = L[,π ],

Au = u′′ –μu with domain D(A) = {u ∈ X,u′′ ∈ X,u() = u(π ) = }, so A is sectorial of type
ω̃ = –μ < . Equation (.) can be rewritten as the abstract form (.), where

f (t,φ)(ξ ) = e–λt
∣∣∣∣∫ ξ


φ(τ )dτ

∣∣∣∣ϑ sin ξ , ϑ ∈ (, ).

Moreover, one has

∥∥f (t,φ)∥∥L ≤ e–λt π
ϑ+
√

ϑ + 
‖φ‖ϑ

L ≤ π
ϑ+
√

ϑ + 
‖φ‖ϑ

L , t ≥ ,φ ∈ X, (.)

∥∥f (t +ω,φ) – f (t,φ)
∥∥
L ≤ (

e–λ(t+ω) + e–λt) π
ϑ+
√

ϑ + 
‖φ‖ϑ

L , t ≥ ,φ ∈ X, (.)

∥∥f (t,φ) – f (t,φ)
∥∥
L ≤ e–λt π

ϑ+
√

ϑ + 
‖φ – φ‖ϑ

L , t ≥ ,φ,φ ∈ X, (.)

so f ∈ SAPω(R+ ×X,X) and f is asymptotically uniformly continuous on bounded sets by

(.). By (.), we define W by W (ξ ) = π
ϑ+
√

ϑ+ ξ
ϑ . Let h(t) = eλt , λ > , u, v ∈ Ch(R+,X), one

has


h(t)

∫ t



W (νh(s))
 + |μ|(t – s)α

ds≤ νϑπ
ϑ+
 |μ|–/α√

ϑ + α sin(π/α)
· 
eλ(–ϑ)t → , t → ∞,

∫ t



‖f (s,u(s)) – f (s, v(s))‖L
 + |μ|(t – s)α

ds ≤ π
ϑ+
 |μ|–/α√

ϑ + α sin(π/α)
‖u – v‖ϑ

h .

Hence (A)-(A) hold.
Next, we prove that the set {f (s, eλsφ) : a ≤ s ≤ b,φ ∈ X,‖φ‖L ≤ r} is relatively compact

in L[,T] by Simon’s theorem. In fact, one has

∥∥f (s, eλsφ
)∥∥

L ≤ π
ϑ+
 rϑ√
ϑ + 

, φ ∈ L[,π ],‖φ‖L ≤ r.

Hence, for a < a,
∫ a
a

f (s, eλsφ)(ξ )dξ is bounded uniformly for a ≤ s≤ b and φ ∈ L[,π ],
‖φ‖L ≤ r. On the other hand,

∥∥f (s, eλsφ
)
(ξ ) – f

(
s, eλsφ

)(
ξ ′)∥∥ ≤ rϑ/

∣∣ξ – ξ ′∣∣ϑ/ + πϑ/rϑ
∣∣ξ – ξ ′∣∣,

therefore,

∫ π–h



∣∣f (s, eλsφ
)
(ξ + h) – f

(
s, eλsφ

)
(ξ )

∣∣ dξ → , as h→ 
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uniformly for a ≤ s ≤ b, φ ∈ L[,π ], ‖φ‖L ≤ r. So (A) holds by Lemma .. It is not
difficult to see that (A) holds. Whence (.) has a mild solution u ∈ SAPω(R+,X) by The-
orem ..
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