10,949 research outputs found
A Complementary Resistive Switch-based Crossbar Array Adder
Redox-based resistive switching devices (ReRAM) are an emerging class of
non-volatile storage elements suited for nanoscale memory applications. In
terms of logic operations, ReRAM devices were suggested to be used as
programmable interconnects, large-scale look-up tables or for sequential logic
operations. However, without additional selector devices these approaches are
not suited for use in large scale nanocrossbar memory arrays, which is the
preferred architecture for ReRAM devices due to the minimum area consumption.
To overcome this issue for the sequential logic approach, we recently
introduced a novel concept, which is suited for passive crossbar arrays using
complementary resistive switches (CRSs). CRS cells offer two high resistive
storage states, and thus, parasitic sneak currents are efficiently avoided.
However, until now the CRS-based logic-in-memory approach was only shown to be
able to perform basic Boolean logic operations using a single CRS cell. In this
paper, we introduce two multi-bit adder schemes using the CRS-based
logic-in-memory approach. We proof the concepts by means of SPICE simulations
using a dynamical memristive device model of a ReRAM cell. Finally, we show the
advantages of our novel adder concept in terms of step count and number of
devices in comparison to a recently published adder approach, which applies the
conventional ReRAM-based sequential logic concept introduced by Borghetti et
al.Comment: 12 pages, accepted for IEEE Journal on Emerging and Selected Topics
in Circuits and Systems (JETCAS), issue on Computing in Emerging Technologie
Bayesian Spatial Binary Regression for Label Fusion in Structural Neuroimaging
Many analyses of neuroimaging data involve studying one or more regions of
interest (ROIs) in a brain image. In order to do so, each ROI must first be
identified. Since every brain is unique, the location, size, and shape of each
ROI varies across subjects. Thus, each ROI in a brain image must either be
manually identified or (semi-) automatically delineated, a task referred to as
segmentation. Automatic segmentation often involves mapping a previously
manually segmented image to a new brain image and propagating the labels to
obtain an estimate of where each ROI is located in the new image. A more recent
approach to this problem is to propagate labels from multiple manually
segmented atlases and combine the results using a process known as label
fusion. To date, most label fusion algorithms either employ voting procedures
or impose prior structure and subsequently find the maximum a posteriori
estimator (i.e., the posterior mode) through optimization. We propose using a
fully Bayesian spatial regression model for label fusion that facilitates
direct incorporation of covariate information while making accessible the
entire posterior distribution. We discuss the implementation of our model via
Markov chain Monte Carlo and illustrate the procedure through both simulation
and application to segmentation of the hippocampus, an anatomical structure
known to be associated with Alzheimer's disease.Comment: 24 pages, 10 figure
Spoken words
Chiefly tablesIncludes bibliographical referencesSupported in part by the National Institute of Education under contract no. US-NIE-C-400-76-011
Recommended from our members
The alpha1 subunit of the GABA(A) receptor modulates fear learning and plasticity in the lateral amygdala.
Synaptic plasticity in the amygdala is essential for emotional learning. Fear conditioning, for example, depends on changes in excitatory transmission that occur following NMDA receptor activation and AMPA receptor modification in this region. The role of these and other glutamatergic mechanisms have been studied extensively in this circuit while relatively little is known about the contribution of inhibitory transmission. The current experiments addressed this issue by examining the role of the GABA(A) receptor subunit alpha1 in fear learning and plasticity. We first confirmed previous findings that the alpha1 subunit is highly expressed in the lateral nucleus of the amygdala. Consistent with this observation, genetic deletion of this subunit selectively enhanced plasticity in the lateral amygdala and increased auditory fear conditioning. Mice with selective deletion of alpha1 in excitatory cells did not exhibit enhanced learning. Finally, infusion of a alpha1 receptor antagonist into the lateral amygdala selectively impaired auditory fear learning. Together, these results suggest that inhibitory transmission mediated by alpha1-containing GABA(A) receptors plays a critical role in amygdala plasticity and fear learning
Toward a script theory of guidance in computer-supported collaborative learning
This article presents an outline of a script theory of guidance for computer-supported collaborative learning (CSCL). With its four types of components of internal and external scripts (play, scene, role, and scriptlet) and seven principles, this theory addresses the question how CSCL practices are shaped by dynamically re-configured internal collaboration scripts of the participating learners. Furthermore, it explains how internal collaboration scripts develop through participation in CSCL practices. It emphasizes the importance of active application of subject matter knowledge in CSCL practices, and it prioritizes transactive over non-transactive forms of knowledge application in order to facilitate learning. Further, the theory explains how external collaboration scripts modify CSCL practices and how they influence the development of internal collaboration scripts. The principles specify an optimal scaffolding level for external collaboration scripts and allow for the formulation of hypotheses about the fading of external collaboration scripts. Finally, the article points towards conceptual challenges and future research questions
Analytical results for a trapped, weakly-interacting Bose-Einstein condensate under rotation
We examine the problem of a repulsive, weakly-interacting and harmonically
trapped Bose-Einstein condensate under rotation. We derive a simple analytic
expression for the energy incorporating the interactions when the angular
momentum per particle is between zero and one and find that the interaction
energy decreases linearly as a function of the angular momentum in agreement
with previous numerical and limiting analytical studies.Comment: 3 pages, RevTe
A review of wildland fire spread modelling, 1990-present, 1: Physical and quasi-physical models
In recent years, advances in computational power and spatial data analysis
(GIS, remote sensing, etc) have led to an increase in attempts to model the
spread and behaviour of wildland fires across the landscape. This series of
review papers endeavours to critically and comprehensively review all types of
surface fire spread models developed since 1990. This paper reviews models of a
physical or quasi-physical nature. These models are based on the fundamental
chemistry and/or physics of combustion and fire spread. Other papers in the
series review models of an empirical or quasi-empirical nature, and
mathematical analogues and simulation models. Many models are extensions or
refinements of models developed before 1990. Where this is the case, these
models are also discussed but much less comprehensively.Comment: 31 pages + 8 pages references + 2 figures + 5 tables. Submitted to
International Journal of Wildland Fir
Wind farm facilities in Germany kill noctule bats from near and far
Over recent years, it became widely accepted that alternative, renewable energy may come at some risk for wildlife, for example, when wind turbines cause large numbers of bat fatalities. To better assess likely populations effects of wind turbine related wildlife fatalities, we studied the geographical origin of the most common bat species found dead below German wind turbines, the noctule bat (Nyctalus noctula). We measured stable isotope ratios of non-exchangeable hydrogen in fur keratin to separate migrants from local individuals, used a linear mixed-effects model to identify temporal, spatial and biological factors explaining the variance in measured stable isotope ratios and determined the geographical breeding provenance of killed migrants using isoscape origin models. We found that 72% of noctule bat casualties (n = 136) were of local origin, while 28% were long-distance migrants. These findings highlight that bat fatalities at German wind turbines may affect both local and distant populations. Our results indicated a sex and age-specific vulnerability of bats towards lethal accidents at turbines, i.e. a relatively high proportion of killed females were recorded among migratory individuals, whereas more juveniles than adults were recorded among killed bats of local origin. Migratory noctule bats were found to originate from distant populations in the Northeastern parts of Europe. The large catchment areas of German wind turbines and high vulnerability of female and juvenile noctule bats call for immediate action to reduce the negative cross-boundary effects of bat fatalities at wind turbines on local and distant populations. Further, our study highlights the importance of implementing effective mitigation measures and developing species and scale-specific conservation approaches on both national and international levels to protect source populations of bats. The efficacy of local compensatory measures appears doubtful, at least for migrant noctule bats, considering the large geographical catchment areas of German wind turbines for this species
Association of West Nile virus illness and urban landscapes in Chicago and Detroit
BACKGROUND: West Nile virus infection in humans in urban areas of the Midwestern United States has exhibited strong spatial clustering during epidemic years. We derived urban landscape classes from the physical and socio-economic factors hypothesized to be associated with West Nile Virus (WNV) transmission and compared those to human cases of illness in 2002 in Chicago and Detroit. The objectives were to improve understanding of human exposure to virus-infected mosquitoes in the urban context, and to assess the degree to which environmental factors found to be important in Chicago were also found in Detroit. RESULTS: Five urban classes that partitioned the urban space were developed for each city region. The classes had many similarities in the two settings. In both regions, the WNV case rate was considerably higher in the urban class associated with the Inner Suburbs, where 1940–1960 era housing dominates, vegetation cover is moderate, and population density is moderate. The land cover mapping approach played an important role in the successful and consistent classification of the urban areas. CONCLUSION: The analysis demonstrates how urban form and past land use decisions can influence transmission of a vector-borne virus. In addition, the results are helpful to develop hypotheses regarding urban landscape features and WNV transmission, they provide a structured method to stratify the urban areas to locate representative field study sites specifically for WNV, and this analysis contributes to the question of how the urban environment affects human health
- …
