Many analyses of neuroimaging data involve studying one or more regions of
interest (ROIs) in a brain image. In order to do so, each ROI must first be
identified. Since every brain is unique, the location, size, and shape of each
ROI varies across subjects. Thus, each ROI in a brain image must either be
manually identified or (semi-) automatically delineated, a task referred to as
segmentation. Automatic segmentation often involves mapping a previously
manually segmented image to a new brain image and propagating the labels to
obtain an estimate of where each ROI is located in the new image. A more recent
approach to this problem is to propagate labels from multiple manually
segmented atlases and combine the results using a process known as label
fusion. To date, most label fusion algorithms either employ voting procedures
or impose prior structure and subsequently find the maximum a posteriori
estimator (i.e., the posterior mode) through optimization. We propose using a
fully Bayesian spatial regression model for label fusion that facilitates
direct incorporation of covariate information while making accessible the
entire posterior distribution. We discuss the implementation of our model via
Markov chain Monte Carlo and illustrate the procedure through both simulation
and application to segmentation of the hippocampus, an anatomical structure
known to be associated with Alzheimer's disease.Comment: 24 pages, 10 figure