2,631 research outputs found

    The Affective Impact of Financial Skewness on Neural Activity and Choice

    Get PDF
    Few finance theories consider the influence of “skewness” (or large and asymmetric but unlikely outcomes) on financial choice. We investigated the impact of skewed gambles on subjects' neural activity, self-reported affective responses, and subsequent preferences using functional magnetic resonance imaging (FMRI). Neurally, skewed gambles elicited more anterior insula activation than symmetric gambles equated for expected value and variance, and positively skewed gambles also specifically elicited more nucleus accumbens (NAcc) activation than negatively skewed gambles. Affectively, positively skewed gambles elicited more positive arousal and negatively skewed gambles elicited more negative arousal than symmetric gambles equated for expected value and variance. Subjects also preferred positively skewed gambles more, but negatively skewed gambles less than symmetric gambles of equal expected value. Individual differences in both NAcc activity and positive arousal predicted preferences for positively skewed gambles. These findings support an anticipatory affect account in which statistical properties of gambles—including skewness—can influence neural activity, affective responses, and ultimately, choice

    Quark Coulomb Interactions and the Mass Difference of Mirror Nuclei

    Get PDF
    We study the Okamoto-Nolen-Schiffer (ONS) anomaly in the binding energy of mirror nuclei at high density by adding a single neutron or proton to a quark gluon plasma. In this high-density limit we find an anomaly equal to two-thirds of the Coulomb exchange energy of a proton. This effect is dominated by quark electromagnetic interactions---rather than by the up-down quark mass difference. At normal density we calculate the Coulomb energy of neutron matter using a string-flip quark model. We find a nonzero Coulomb energy because of the neutron's charged constituents. This effect could make a significant contribution to the ONS anomaly.Comment: 4 pages, 2 figs. sub. to Phys. Rev. Let

    Three-dimensional atmospheric circulation of hot Jupiters on highly eccentric orbits

    Full text link
    Of the over 800 exoplanets detected to date, over half are on non-circular orbits, with eccentricities as high as 0.93. Such orbits lead to time-variable stellar heating, which has implications for the planet's atmospheric dynamical regime. However, little is known about this dynamical regime, and how it may influence observations. Therefore, we present a systematic study of hot Jupiters on highly eccentric orbits using the SPARC/MITgcm, a model which couples a three-dimensional general circulation model with a plane-parallel, two-stream, non-grey radiative transfer model. In our study, we vary the eccentricity and orbit-average stellar flux over a wide range. We demonstrate that the eccentric hot Jupiter regime is qualitatively similar to that of planets on circular orbits; the planets possess a superrotating equatorial jet and exhibit large day-night temperature variations. We show that these day-night heating variations induce momentum fluxes equatorward to maintain the superrotating jet throughout its orbit. As the eccentricity and/or stellar flux is increased, the superrotating jet strengthens and narrows, due to a smaller Rossby deformation radius. For a select number of model integrations, we generate full-orbit lightcurves and find that the timing of transit and secondary eclipse viewed from Earth with respect to periapse and apoapse can greatly affect what we see in infrared (IR) lightcurves; the peak in IR flux can lead or lag secondary eclipse depending on the geometry. For those planets that have large day-night temperature variations and rapid rotation rates, we find that the lightcurves exhibit "ringing" as the planet's hottest region rotates in and out of view from Earth. These results can be used to explain future observations of eccentric transiting exoplanets.Comment: 20 pages, 18 figures, 2 tables; Accepted to Ap

    A New 24 micron Phase Curve for upsilon Andromedae b

    Get PDF
    We report the detection of 24 micron variations from the planet-hosting upsilon Andromedae system consistent with the orbital periodicity of the system's innermost planet, upsilon And b. We find a peak-to-valley phase curve amplitude of 0.00130 times the mean system flux. Using a simple model with two hemispheres of constant surface brightness and assuming a planetary radius of 1.3 Jupiter radii gives a planetary temperature contrast of >900 K and an orbital inclination of >28 degrees. We further report the largest phase offset yet observed for an extrasolar planet: the flux maximum occurs ~80 degrees before phase 0.5. Such a large phase offset is difficult to reconcile with most current atmospheric circulation models. We improve on earlier observations of this system in several important ways: (1) observations of a flux calibrator star demonstrate the MIPS detector is stable to 10^-4 on long timescales, (2) we note that the background light varies systematically due to spacecraft operations, precluding use of this background as a flux calibrator (stellar flux measured above the background is not similarly affected), and (3) we calibrate for flux variability correlated with motion of the star on the MIPS detector. A reanalysis of our earlier observations of this system is consistent with our new result.Comment: Submitted to ApJ. 15 pages, 6 figures, 4 table

    Q-systems, Heaps, Paths and Cluster Positivity

    Full text link
    We consider the cluster algebra associated to the QQ-system for ArA_r as a tool for relating QQ-system solutions to all possible sets of initial data. We show that the conserved quantities of the QQ-system are partition functions for hard particles on particular target graphs with weights, which are determined by the choice of initial data. This allows us to interpret the simplest solutions of the Q-system as generating functions for Viennot's heaps on these target graphs, and equivalently as generating functions of weighted paths on suitable dual target graphs. The generating functions take the form of finite continued fractions. In this setting, the cluster mutations correspond to local rearrangements of the fractions which leave their final value unchanged. Finally, the general solutions of the QQ-system are interpreted as partition functions for strongly non-intersecting families of lattice paths on target lattices. This expresses all cluster variables as manifestly positive Laurent polynomials of any initial data, thus proving the cluster positivity conjecture for the ArA_r QQ-system. We also give an alternative formulation in terms of domino tilings of deformed Aztec diamonds with defects.Comment: 106 pages, 38 figure

    Atmospheric Circulation of Eccentric Hot Jupiter HAT-P-2b

    Get PDF
    The hot Jupiter HAT-P-2b has become a prime target for Spitzer Space Telescope observations aimed at understanding the atmospheric response of exoplanets on highly eccentric orbits. Here we present a suite of three-dimensional atmospheric circulation models for HAT-P-2b that investigate the effects of assumed atmospheric composition and rotation rate on global scale winds and thermal patterns. We compare and contrast atmospheric models for HAT-P-2b, which assume one and five times solar metallicity, both with and without TiO/VO as atmospheric constituents. Additionally we compare models that assume a rotation period of half, one, and two times the nominal pseudo-synchronous rotation period. We find that changes in assumed atmospheric metallicity and rotation rate do not significantly affect model predictions of the planetary flux as a function of orbital phase. However, models in which TiO/VO are present in the atmosphere develop a transient temperature inversion between the transit and secondary eclipse events that results in significant variations in the timing and magnitude of the peak of the planetary flux compared with models in which TiO/VO are omitted from the opacity tables. We find that no one single atmospheric model can reproduce the recently observed full orbit phase curves at 3.6, 4.5 and 8.0 μm, which is likely due to a chemical process not captured by our current atmospheric models for HAT-P-2b. Further modeling and observational efforts focused on understanding the chemistry of HAT-P-2b's atmosphere are needed and could provide key insights into the interplay between radiative, dynamical, and chemical processes in a wide range of exoplanet atmospheres

    Wildcat wellness coaching feasibility trial: protocol for home-based health behavior mentoring in girls

    Get PDF
    Citation: Cull, B. J., Rosenkranz, S. K., Dzewaltowski, D. A., Teeman, C. S., Knutson, C. K., & Rosenkranz, R. R. (2016). Wildcat wellness coaching feasibility trial: protocol for home-based health behavior mentoring in girls. Pilot and Feasibility Studies, 2(1), 26. https://doi.org/10.1186/s40814-016-0066-yChildhood obesity is a major public health problem, with one third of America’s children classified as either overweight or obese. Obesity prevention and health promotion programs using components such as wellness coaching and home-based interventions have shown promise, but there is a lack of published research evaluating the impact of a combined home-based and wellness coaching intervention for obesity prevention and health promotion in young girls. The main objective of this study is to test the feasibility of such an intervention on metrics related to recruitment, intervention delivery, and health-related outcome assessments. The secondary outcome is to evaluate the possibility of change in health-related psychosocial, behavioral, and biomedical outcomes in our sample of participants

    Weak splittings of quotients of Drinfeld and Heisenberg doubles

    Full text link
    We investigate the fine structure of the simplectic foliations of Poisson homogeneous spaces. Two general results are proved for weak splittings of surjective Poisson submersions from Heisenberg and Drinfeld doubles. The implications of these results are that the torus orbits of symplectic leaves of the quotients can be explicitly realized as Poisson-Dirac submanifolds of the torus orbits of the doubles. The results have a wide range of applications to many families of real and complex Poisson structures on flag varieties. Their torus orbits of leaves recover important families of varieties such as the open Richardson varieties.Comment: 20 pages, AMS Late

    Hubble Space Telescope Transmission Spectroscopy of the Exoplanet HD 189733b: High-altitude atmospheric haze in the optical and near-UV with STIS

    Get PDF
    We present Hubble Space Telescope optical and near-ultraviolet transmission spectra of the transiting hot-Jupiter HD189733b, taken with the repaired Space Telescope Imaging Spectrograph (STIS) instrument. The resulting spectra cover the range 2900-5700 Ang and reach per-exposure signal-to-noise levels greater than 11,000 within a 500 Ang bandwidth. We used time series spectra obtained during two transit events to determine the wavelength dependance of the planetary radius and measure the exoplanet's atmospheric transmission spectrum for the first time over this wavelength range. Our measurements, in conjunction with existing HST spectra, now provide a broadband transmission spectrum covering the full optical regime. The STIS data also shows unambiguous evidence of a large occulted stellar spot during one of our transit events, which we use to place constraints on the characteristics of the K dwarf's stellar spots, estimating spot temperatures around Teff~4250 K. With contemporaneous ground-based photometric monitoring of the stellar variability, we also measure the correlation between the stellar activity level and transit-measured planet-to-star radius contrast, which is in good agreement with predictions. We find a planetary transmission spectrum in good agreement with that of Rayleigh scattering from a high-altitude atmospheric haze as previously found from HST ACS camera. The high-altitude haze is now found to cover the entire optical regime and is well characterised by Rayleigh scattering. These findings suggest that haze may be a globally dominant atmospheric feature of the planet which would result in a high optical albedo at shorter optical wavelengths.Comment: 14 pages, 14 figures, 4 tables, accepted to MNRAS, revised version has minor change
    corecore