1,848 research outputs found
Production of intense, coherent, tunable narrowāband lymanāalpha radiation
Nearly transform limited pulses of 1216 Ć
radiation have been generated by sum frequency generation in 0.1 to 10 torr of mercury vapor. The summed input beams, consisting of photons at 3127 Ć
and 5454 Ć
originate in 1 MHz bandāwidth ringādye laser oscillators. The beams are amplified in pulsedādye amplifiers pumped by the frequency doubled output of a Nd:YAG laser. The 3127 Ć
photons are tuned to be resonant with the twoāphoton 61S to 71S mercury transition. The VUV radiation can be tuned by varying the frequency of the third nonāresonant photon. We have also observed difference frequency generation at 2193 Ć
and intense fluorescence from the 61P state at 1849 Ć
. We have studied the intensity and linewidth dependence of the 1849 Ć
fluorescence and 1216 Ć
sum frequency signals on input beam intensity, mercury density, and buffer gas pressure and composition.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87716/2/49_1.pd
Illegal Shooting is Now a Leading Cause of Death of Birds Along Power Lines in the Western USA
Human actions, both legal and illegal, affect wildlife in many ways. Inaccurate diagnosis of cause of death undermines law enforcement, management, threat assessment, and mitigation. We found 410 dead birds collected along 196 km of power lines in four western USA states during 2019ā2022. We necropsied these carcasses to test conventional wisdom suggesting that electrocution is the leading cause of death of birds at electrical infrastructure. Of 175 birds with a known cause of death, 66% died from gunshot. Both raptors and corvids were more likely to die from gunshot than from other causes, along both transmission and distribution lines. Past mitigation to reduce avian deaths along power lines has focused almost exclusively on reducing electrocutions or collisions. Our work suggests that, although electrocution and collision remain important, addressing illegal shooting now may have greater relevance for avian conservation
Towards improved socio-economic assessments of ocean acidificationās impacts
Ocean acidification is increasingly recognized as a component of global change that could have a wide range of impacts on marine organisms, the ecosystems they live in, and the goods and services they provide humankind. Assessment of these potential socio-economic impacts requires integrated efforts between biologists, chemists, oceanographers, economists and social scientists. But because ocean acidification is a new research area, significant knowledge gaps are preventing economists from estimating its welfare impacts. For instance, economic data on the impact of ocean acidification on significant markets such as fisheries, aquaculture and tourism are very limited (if not non-existent), and non-market valuation studies on this topic are not yet available. Our paper summarizes the current understanding of future OA impacts and sets out what further information is required for economists to assess socio-economic impacts of ocean acidification. Our aim is to provide clear directions for multidisciplinary collaborative research
The effect of inelastic processes on tunneling
We study an electron that interacts with phonons or other linear or nonlinear
excitations as it resonantly tunnels. The method we use is based on mapping a
many-body problem in a large variational space exactly onto a one-body problem.
The method is conceptually simpler than previous Green's function approaches,
and allows the essentially exact numerical solution of much more general
problems. We solve tunneling problems with transverse channels, multiple sites
coupled to phonons, and multiple phonon degrees of freedom and excitations.Comment: 12 pages, REVTex, 4 figures in compressed tar .ps forma
Tuning a Resonance in the Fock Space: Optimization of Phonon Emission in a Resonant Tunneling Device
Phonon-assisted tunneling in a double barrier resonant tunneling device can
be seen as a resonance in the electron-phonon Fock space which is tuned by the
applied voltage. We show that the geometrical parameters can induce a symmetry
condition in this space that can strongly enhance the emission of longitudinal
optical phonons. For devices with thin emitter barriers this is achieved by a
wider collector's barrier.Comment: 4 pages, 3 figures. Figure 1 changed, typos correcte
Doing it differently: Engaging interview participants with imaginative variation
Imaginative variation was identified by Husserl (1936/1970) as a phenomenological technique for the purpose of elucidating the manner in which phenomena appear to consciousness. Briefly, by engaging in the phenomenological reduction and using imaginative variation, phenomenologists are able to describe the experience of consciousness, having stepped outside of the natural attitude through the epochÄ. Imaginative variation is a stage aimed at explicating the structures of experience, and is best described as a mental experiment. Features of the experience are imaginatively altered in order to view the phenomenon under investigation from varying perspectives. Husserl argued that this process will reveal the essences of an experience, as only those aspects that are invariant to the experience of the phenomenon will not be able to change through the variation.
Often in qualitative research interviews, participants struggle to articulate or verbalise their experiences. The purpose of this article is to detail a radical and novel way of using imaginative variation with interview participants, by asking the participants to engage with imaginative variation, in order to produce a rich and insightful experiential account of a phenomenon. We will discuss how the first author successfully used imaginative variation in this way in her study of the erotic experience of bondage, discipline, dominance & submission, and sadism & masochism (BDSM), before considering the usefulness of this technique when applied to areas of study beyond sexuality
Hypoxia regulates FGFR3 expression via HIF-1Ī± and miR-100 and contributes to cell survival in non-muscle invasive bladder cancer
Background: Non-muscle invasive (NMI) bladder cancer is characterised by increased expression and activating mutations of FGFR3. We have previously investigated the role of microRNAs in bladder cancer and have shown that FGFR3 is a target of miR-100. In this study, we investigated the effects of hypoxia on miR-100 and FGFR3 expression, and the link between miR-100 and FGFR3 in hypoxia.
Methods: Bladder cancer cell lines were exposed to normoxic or hypoxic conditions and examined for the expression of FGFR3
by quantitative PCR (qPCR) and western blotting, and miR-100 by qPCR. The effect of FGFR3 and miR-100 on cell viability in twodimensional (2-D) and three-dimensional (3-D) was examined by transfecting siRNA or mimic-100, respectively.
Results: In NMI bladder cancer cell lines, FGFR3 expression was induced by hypoxia in a transcriptional and HIF-1a-dependent
manner. Increased FGFR3 was also in part dependent on miR-100 levels, which decreased in hypoxia. Knockdown of FGFR3 led to a decrease in phosphorylation of the downstream kinases mitogen-activated protein kinase (MAPK) and protein kinase B (PKB), which was more pronounced under hypoxic conditions. Furthermore, transfection of mimic-100 also decreased phosphorylation of MAPK and PKB. Finally, knocking down FGFR3 profoundly decreased 2-D and 3-D cell growth, whereas introduction of mimic-100 decreased 3-D growth of cells.
Conclusion: Hypoxia, in part via suppression of miR-100, induces FGFR3 expression in bladder cancer, both of which have an
important role in maintaining cell viability under conditions of stress
The effects of non-native signal crayfish (Pacifastacus leniusculus) on fine sediment and sediment-biomonitoring
Ā© 2017 The Authors The North American signal crayfish (Pacifastacus leniusculus) has invaded freshwater ecosystems across Europe. Recent studies suggest that predation of macroinvertebrates by signal crayfish can affect the performance of freshwater biomonitoring tools used to assess causes of ecological degradation. Given the reliance on biomonitoring globally, it is crucial that the potential influence of invasive species is better understood. Crayfish are also biogeomorphic agents, and therefore, the aim of this study was to investigate whether sediment-biomonitoring tool outputs changed following signal crayfish invasions, and whether these changes reflected post-invasion changes to deposited fine sediment, or changes to macroinvertebrate community compositions unrelated to fine sediment. A quasi-experimental study design was employed, utilising interrupted time series analysis of long-term environmental monitoring data and a hierarchical modelling approach. The analysis of all sites (nĀ =Ā 71) displayed a small, but statistically significant increase between pre- and post-invasion index scores for the Proportion of Sediment-sensitive Invertebrates (PSI) index biomonitoring tool (4.1, pĀ <Ā Ā 0.001, 95%CI: 2.1, 6.2), which can range from 0 to 100, but no statistically significant difference was observed for the empirically-weighted PSI (0.4, pĀ =Ā 0.742, 95%CI: āĀ 2.1, 2.9), or fine sediment (āĀ 2.3, pĀ =Ā 0.227, 95%CI: āĀ 6.0, 1.4). Subgroup analyses demonstrated changes in biomonitoring tool scores ranging from four to 10 percentage points. Importantly, these subgroup analyses showed relatively small changes to fine sediment, two of which were statistically significant, but these did not coincide with the expected responses from biomonitoring tools. The results suggest that sediment-biomonitoring may be influenced by signal crayfish invasions, but the effects appear to be context dependent, and perhaps not the result of biogeomorphic activities of crayfish. The low magnitude changes to biomonitoring scores are unlikely to result in an incorrect diagnosis of sediment pressure, particularly as these tools should be used alongside a suite of other pressure-specific indices
- ā¦