127 research outputs found

    Traffic-Related Atmospheric Pollutants Levels during Pregnancy and Offspring’s Term Birth Weight: A Study Relying on a Land-Use Regression Exposure Model

    Get PDF
    International audienceBACKGROUND: Some studies have suggested that particulate matter (PM) levels during pregnancy may be associated with birth weight. Road traffic is a major source of fine PM (PM with aero-dynamic diameter 2,500 g in Munich metropolitan area were included. We assessed PM(2.5), PM(2.5) absorbance (which depends on the blackness of PM(2.5), a marker of traffic-related air pollution), and nitrogen dioxide levels using a land-use regression model, taking into account the type and length of roads, population density, land coverage around the home address, and temporal variations in pollution during pregnancy. Using Poisson regression, we estimated prevalence ratios (PR) of birth weight < 3,000 g, adjusted for gestational duration, sex, maternal smoking, height, weight, and education. RESULTS: Exposure was defined for 1,016 births. Taking the lowest quartile of exposure during pregnancy as a reference, the PR of birth weight < 3,000 g associated with the highest quartile was 1.7 for PM(2.5) [95% confidence interval (CI), 1.2-2.7], 1.8 for PM(2.5) absorbance (95% CI, 1.1-2.7), and 1.2 for NO(2) (95% CI, 0.7-1.7). The PR associated with an increase of 1 microg/m(3) in PM(2.5) levels was 1.13 (95% CI, 1.00-1.29). CONCLUSION: Increases in PM(2.5) levels and PM(2.5) absorbance were associated with decreases in term birth weight. Traffic-related air pollutants may have adverse effects on birth weight

    The transcription factor Sox5 modulates Sox10 function during melanocyte development

    Get PDF
    The transcription factor Sox5 has previously been shown in chicken to be expressed in early neural crest cells and neural crest-derived peripheral glia. Here, we show in mouse that Sox5 expression also continues after neural crest specification in the melanocyte lineage. Despite its continued expression, Sox5 has little impact on melanocyte development on its own as generation of melanoblasts and melanocytes is unaltered in Sox5-deficient mice. Loss of Sox5, however, partially rescued the strongly reduced melanoblast generation and marker gene expression in Sox10 heterozygous mice arguing that Sox5 functions in the melanocyte lineage by modulating Sox10 activity. This modulatory activity involved Sox5 binding and recruitment of CtBP2 and HDAC1 to the regulatory regions of melanocytic Sox10 target genes and direct inhibition of Sox10-dependent promoter activation. Both binding site competition and recruitment of corepressors thus help Sox5 to modulate the activity of Sox10 in the melanocyte lineage

    Transcription factor Sox10 orchestrates activity of a neural crest-specific enhancer in the vicinity of its gene

    Get PDF
    The Sox10 transcription factor is a central regulator of vertebrate neural crest and nervous system development. Its expression is likely controlled by multiple enhancer elements, among them U3 (alternatively known as MCS4). Here we analyze U3 activity to obtain deeper insights into Sox10 function and expression in the neural crest and its derivatives. U3 activity strongly depends on the presence of Sox10 that regulates its own expression as commonly observed for important developmental regulators. Sox10 bound directly as monomer to at least three sites in U3, whereas a fourth site preferred dimers. Deletion of these sites efficiently reduced U3 activity in transfected cells and transgenic mice. In stimulating the U3 enhancer, Sox10 synergized with many other transcription factors present in neural crest and developing peripheral nervous system including Pax3, FoxD3, AP2α, Krox20 and Sox2. In case of FoxD3, synergism involved Sox10-dependent recruitment to the U3 enhancer, while Sox10 and AP2α each had to bind to the regulatory region. Our study points to the importance of autoregulatory activity and synergistic interactions for maintenance of Sox10 expression and functional activity of Sox10 in the neural crest regulatory network

    FADS1 FADS2 Gene Cluster, PUFA Intake and Blood Lipids in Children: Results from the GINIplus and LISAplus Studies

    Get PDF
    BACKGROUND: Elevated cholesterol levels in children can be a risk factor for cardiovascular diseases in later life. In adults, it has been shown that blood lipid levels are strongly influenced by polymorphisms in the fatty acid desaturase (FADS) gene cluster in addition to nutritional and other exogenous and endogenous determinants. Our aim was to investigate whether lipid levels are determined by the FADS genotype already in children and whether this association interacts with dietary intake of n-3 fatty acids. METHODS: The analysis was based on data of 2006 children from two German prospective birth cohort studies. Total cholesterol, HDL, LDL and triglycerides were measured at 10 years of age. Six single nucleotide polymorphisms (SNPs) of the FADS gene cluster were genotyped. Dietary n-3 fatty acid intake was assessed by food frequency questionnaire. Linear regression modeling was used to assess the association between lipid levels, n-3 fatty acid intake and FADS genotype. RESULTS: Individuals carrying the homozygous minor allele had lower levels of total cholesterol [means ratio (MR) ranging from 0.96 (p = 0.0093) to 0.98 (p = 0.2949), depending on SNPs] and LDL [MR between 0.94 (p = 0.0179) and 0.97 (p = 0.2963)] compared to homozygous major allele carriers. Carriers of the heterozygous allele showed lower HDL levels [β between -0.04 (p = 0.0074) to -0.01 (p = 0.3318)] and higher triglyceride levels [MR ranging from 1.06 (p = 0.0065) to 1.07 (p = 0.0028)] compared to homozygous major allele carriers. A higher n-3 PUFA intake was associated with higher concentrations of total cholesterol, LDL, HDL and lower triglyceride levels, but these associations did not interact with the FADS1 FADS2 genotype. CONCLUSION: Total cholesterol, HDL, LDL and triglyceride concentrations may be influenced by the FADS1 FADS2 genotype already in 10 year old children. Genetically determined blood lipid levels during childhood might differentially predispose individuals to the development of cardiovascular diseases later in life

    Genome-Wide Scan on Total Serum IgE Levels Identifies FCER1A as Novel Susceptibility Locus

    Get PDF
    High levels of serum IgE are considered markers of parasite and helminth exposure. In addition, they are associated with allergic disorders, play a key role in anti-tumoral defence, and are crucial mediators of autoimmune diseases. Total IgE is a strongly heritable trait. In a genome-wide association study (GWAS), we tested 353,569 SNPs for association with serum IgE levels in 1,530 individuals from the population-based KORA S3/F3 study. Replication was performed in four independent population-based study samples (total n = 9,769 individuals). Functional variants in the gene encoding the alpha chain of the high affinity receptor for IgE (FCER1A) on chromosome 1q23 (rs2251746 and rs2427837) were strongly associated with total IgE levels in all cohorts with P values of 1.85×10−20 and 7.08×10−19 in a combined analysis, and in a post-hoc analysis showed additional associations with allergic sensitization (P = 7.78×10−4 and P = 1.95×10−3). The “top” SNP significantly influenced the cell surface expression of FCER1A on basophils, and genome-wide expression profiles indicated an interesting novel regulatory mechanism of FCER1A expression via GATA-2. Polymorphisms within the RAD50 gene on chromosome 5q31 were consistently associated with IgE levels (P values 6.28×10−7−4.46×10−8) and increased the risk for atopic eczema and asthma. Furthermore, STAT6 was confirmed as susceptibility locus modulating IgE levels. In this first GWAS on total IgE FCER1A was identified and replicated as new susceptibility locus at which common genetic variation influences serum IgE levels. In addition, variants within the RAD50 gene might represent additional factors within cytokine gene cluster on chromosome 5q31, emphasizing the need for further investigations in this intriguing region. Our data furthermore confirm association of STAT6 variation with serum IgE levels

    Zebrafish Endzone Regulates Neural Crest-Derived Chromatophore Differentiation and Morphology

    Get PDF
    The development of neural crest-derived pigment cells has been studied extensively as a model for cellular differentiation, disease and environmental adaptation. Neural crest-derived chromatophores in the zebrafish (Danio rerio) consist of three types: melanophores, xanthophores and iridiphores. We have identified the zebrafish mutant endzone (enz), that was isolated in a screen for mutants with neural crest development phenotypes, based on an abnormal melanophore pattern. We have found that although wild-type numbers of chromatophore precursors are generated in the first day of development and migrate normally in enz mutants, the numbers of all three chromatophore cell types that ultimately develop are reduced. Further, differentiated melanophores and xanthophores subsequently lose dendricity, and iridiphores are reduced in size. We demonstrate that enz function is required cell autonomously by melanophores and that the enz locus is located on chromosome 7. In addition, zebrafish enz appears to selectively regulate chromatophore development within the neural crest lineage since all other major derivatives develop normally. Our results suggest that enz is required relatively late in the development of all three embryonic chromatophore types and is normally necessary for terminal differentiation and the maintenance of cell size and morphology. Thus, although developmental regulation of different chromatophore sublineages in zebrafish is in part genetically distinct, enz provides an example of a common regulator of neural crest-derived chromatophore differentiation and morphology
    corecore