1,301 research outputs found

    Inverse modeling of CO2 sources and sinks using satellite data: a synthetic inter-comparison of measurement techniques and their performance as a function of space and time

    Get PDF
    Currently two polar orbiting satellite instruments measure CO<sub>2</sub> concentrations in the Earth's atmosphere, while other missions are planned for the coming years. In the future such instruments might become powerful tools for monitoring changes in the atmospheric CO<sub>2</sub> abundance and to improve our quantitative understanding of the leading processes controlling this. At the moment, however, we are still in an exploratory phase where first experiences are collected and promising new space-based measurement concepts are investigated. This study assesses the potential of some of these concepts to improve CO<sub>2</sub> source and sink estimates obtained from inverse modelling. For this purpose the performance of existing and planned satellite instruments is quantified by synthetic simulations of their ability to reduce the uncertainty of the current source and sink estimates in comparison with the existing ground-based network of sampling sites. Our high resolution inversion of sources and sinks (at 8&deg;x10&deg;) allows us to investigate the variation of instrument performance in space and time and at various temporal and spatial scales. The results of our synthetic tests clearly indicate that the satellite performance increases with increasing sensitivity of the instrument to CO<sub>2</sub> near the Earth's surface, favoring the near infra-red technique. Thermal infrared instruments, on the contrary, reach a better global coverage, because the performance in the near infrared is reduced over the oceans owing to a low surface albedo. Near infra-red sounders can compensate for this by measuring in sun-glint, which will allow accurate measurements over the oceans, at the cost, however, of a lower measurement density. Overall, the sun-glint pointing near infrared instrument is the most promising concept of those tested. We show that the ability of satellite instruments to resolve fluxes at smaller temporal and spatial scales is also related to surface sensitivity. All the satellite instruments performed relatively well over the continents resulting mainly from the larger prior flux uncertainties over land than over the oceans. In addition, the surface networks are rather sparse over land increasing the additional benefit of satellite measurements there. Globally, challenging satellite instrument precisions are needed to compete with the current surface network (about 1ppm for weekly and 8&deg;x10&deg; averaged SCIAMACHY columns). Regionally, however, these requirements relax considerably, increasing to 5ppm for SCIAMACHY over tropical continents. This points not only to an interesting research area using SCIAMACHY data, but also to the fact that satellite requirements should not be quantified by only a single number. The applicability of our synthetic results to real satellite instruments is limited by rather crude representations of instrument and data retrieval related uncertainties. This should receive high priority in future work

    Validation and analysis of MOPITT CO observations of the Amazon Basin

    Get PDF
    We analyze satellite retrievals of carbon monoxide from the MOPITT (Measurements of Pollution in the Troposphere) instrument over the Amazon Basin, focusing on the MOPITT Version 6 "multispectral" retrieval product (exploiting both thermal-infrared and near-infrared channels). Validation results based on in situ vertical profiles measured between 2010 and 2013 are presented for four sites in the Amazon Basin. Results indicate a significant negative bias in retrieved lower-tropospheric CO concentrations. The possible influence of smoke aerosol as a source of retrieval bias is investigated using collocated Aerosol Robotic Network (AERONET) aerosol optical depth (AOD) measurements at two sites but does not appear to be significant. Finally, we exploit the MOPITT record to analyze both the mean annual cycle and the interannual variability of CO over the Amazon Basin since 2002

    Correlation gap in armchair carbon nanotubes

    Full text link
    We revisit the problem of the correlation gap in (n,n) armchair carbon nanotubes, that would be metallic in the absence of electron-electron correlations. We attack the problem in the context of a Hubbard model with on-site repulsion U only, and we show that the scaling of the gap as exp(-nt/U) predicted by Balents and Fisher (Phys. Rev. B 55, R11973 (1997)), can only be valid if U is not too large, even for very large values of n. Using Hartree--Fock calculations and Renormalisation Group arguments we derive the scaling of the gap as a function of n for a given value of U. Possible applications for the magnitude of the correlation gap in armchair carbon nanotubes will be discussed.Comment: 4 pages, 4 figures, to be published in Europhys. Let

    Theory of Ferromagnetism in Doped Excitonic Condensates

    Full text link
    Nesting in a semimetal can lead to an excitonic insulator state with spontaneous coherence between conduction and valence bands and a gap for charged excitations. In this paper we present a theory of the ferromagnetic state that occurs when the density of electrons in the conduction band and holes in the valence band differ. We find an unexpectedly rich doping-field phase diagram and an unusual collective excitation spectrum that includes two gapless collective modes. We predict regions of doping and external field in which phase-separated condensates of electrons and holes with parallel spins and opposing spins coexist.Comment: 5 pages, 3 postscript file

    Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes

    Get PDF
    We constructed a whole carbon budget for a catchment in the Western Amazon Basin, combining drainage water analyses with eddy covariance measured terrestrial CO2 fluxes. As fluvial C export can represent permanent C export it must be included in assessments of whole site C balance, but is rarely done. The footprint area of the flux tower is drained by two small streams (~5-7 km2) from which we measured the dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), particulate organic carbon (POC) export and CO2 efflux. The EC measurements showed the site C balance to be +0.7 ± 9.7 Mg C ha-1 yr-1 (a source to the atmosphere) and fluvial export was 0.3 ± 0.04 Mg C ha-1 yr-1. Of the total fluvial loss 34% was DIC, 37% DOC and 29% POC. The wet season was most important for fluvial C export. There was a large uncertainty associated with the EC results and with previous biomass plot studies (-0.5 ± 4.1 Mg C ha-1 yr-1), hence it cannot be concluded with certainty whether the site is C sink or source. The fluvial export corresponds to only 3-7 % of the uncertainty related to the site C balance, thus other factors need to be considered to reduce the uncertainty and refine the estimated C balance. However, stream C export is significant, especially for almost neutral sites where fluvial loss may determine the direction of the site C balance. The fate of C downstream then dictates the overall climate impact of fluvial export

    Vertical profiles of CO\u3csub\u3e2\u3c/sub\u3e above eastern Amazonia suggest a net carbon flux to the atmosphere and balanced biosphere between 2000 and 2009

    Get PDF
    From 2000 until January 2010 vertical profiles were collected above eastern Amazonia to help determine regional-scale (∼105–106 km2) fluxes of carbon cycle-related greenhouse gases. Samples were collected aboard light aircraft between the surface and 4.3 km and a column integration technique was used to determine the CO2 flux. Measured CO2 profiles were differenced from the CO2 background determined from measurements in the tropical Atlantic. The observed annual flux between the coast and measurement sites was 0.40 ± 0.27 gC m−2 d−1 (90% confidence interval using a bootstrap analysis). The wet season (January–June) mean flux was 0.44 ± 0.38 gC m−2 d−1 (positive fluxes defined as a source to the atmosphere) and the dry season mean flux was 0.35 ± 0.17 gC m−2 d−1 (July–December). The observed flux variability is high, principally in the wet season. The influence of biomass burning has been removed using co-measured CO, and revealed the presence of a significant dry season sink. The annual mean vegetation flux, after the biomass burning correction, was 0.02 ± 0.27 gC m−2 d−1, and a clear sink was observed between August and November of −0.70 ± 0.21 gC m−2 d−1 where for all of the dry season it was −0.24 ± 0.17 gC m−2 d−1

    An inconvenient truth? Interpersonal and career consequences of “maybe baby” expectations

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.We examine a counterintuitive effect of motherhood and parental leave policies: supervisors and coworkers may view early career women who have yet to have children (i.e., childless women) with greater uncertainty and inconvenience than their counterparts (i.e., childless men), especially in organizations offering more maternal than paternal leave. We propose that these “maybe baby” expectations manifest as workplace incivility, which predicts later career withdrawal. In a time-lagged survey study, we examined 474 early career employees' experiences of workplace incivility and career withdrawal cognitions one year later; we also collected objective data on organizations' maternal and paternal leave policies. As expected, childless women experienced more incivility than their counterparts, a difference that was greater in organizations with larger differences between maternal leave and paternal leave policies and positively associated with subsequent career withdrawal. Discussion focuses on the importance of examining individual- and organizational-level work-family antecedents for understanding modern workplace mistreatment and its career effects in context, as well as the effective design and implementation of work-family policies
    corecore