126 research outputs found

    CliCrop: a Crop Water-Stress and Irrigation Demand Model for an Integrated Global Assessment Model Approach

    Get PDF
    http://globalchange.mit.edu/research/publications/2264This paper describes the use of the CliCrop model in the context of climate change general assessment modeling. The MIT Integrated Global System Model (IGSM) framework is a global integrated assessment modeling framework that uses emission predictions and economic outputs from the MIT Emission Prediction and Policy Analysis (EPPA) model and earth system modeling predictions from the IGSM to drive a land system component, a crop model (CliCrop) and a Water Resource System (WRS) model. The global Agriculture and Water System are dependant upon and interlinked with the global climate system. As irrigated agriculture provides 60% of grains and 40% of all crop production on 20% of global crop lands and accounts for 80% of global water consumption, it is crucial that the agricultural-water linkage be properly modeled. Crop models are used to predict future yields, irrigation demand and to understand the effect of crop and soil type on food productivity and soil fertility. In the context of an integrated global assessment, a crop water-stress and irrigation demand model must meet certain specifications that are different for other crop models; it needs to be global, fast and generic with a minimal set of inputs. This paper describes how CliCrop models the physical and biological processes of crop growth and yield production and its use within the MIT Integrated Global System Model (IGSM) framework, including the data inputs. This paper discusses the global data bases used as input to CliCrop and provides a comparison of the accuracy of CliCrop with the detailed biological-based crop model DSSAT as well as with measured crop yields over the U.S. at the country level using reanalyzed weather data. In both cases CliCrop performed well and the analysis validated its use for climate change impact assessment. We then show why correctly modeling the soil is important for irrigation demand calculation, especially in temperate areas. Finally, we discuss a method to estimate actual water withdrawal from modeled physical crop requirements using U.S. historical data.The initial funding for CliCrop was provided by USAID under a program on climate change adaptation in Niger. Further funding was provided by UN University World Institute for Development Economics Research for the Application and Development of CliCrop in Africa, the authors would like to particularly thank Prof. Finn Tarp, Prof. Channing Arndt and Dr. James Thurlow for their support. The authors also would like to thank Dr. Jawoo Koo of IFPRI for his review and contributions to the software development. The authors also gratefully acknowledge additional financial support for this work provided by the MIT Joint Program on the Science and Policy of Global Change through a consortium of industrial sponsors and Federal grants. Development of the IGSM applied in this research was supported by the U.S. Department of Energy, Office of Science (DE-FG02-94ER61937); the U.S. Environmental Protection Agency, EPRI, and other U.S. government agencies and a consortium of 40 industrial and foundation sponsors

    Analysis of U.S. Water Resources under Climate Change

    Get PDF
    The MIT Integrated Global System Model (IGSM) framework, extended to include a Water Resource System (WRS) component, is applied to an integrated assessment of effects of alternative climate policy scenarios on U.S. water systems. Climate results are downscaled to yield estimates of surface runoff at 99 river basins of the continental U.S., with an exploration of climate patterns that are relatively wet and dry over the region. These estimates are combined with estimated groundwater supplies. An 11-region economic model (USREP) sets conditions driving water requirements estimated for five use sectors, with detailed sub-models employed for analysis of irrigation and electric power. The water system of the interconnected basins is operated to minimize water stress. Results suggest that, with or without climate change, U.S. average annual water stress is expected to increase over the period 2041 to 2050, primarily because of an increase in water requirements, with the largest water stresses projected in the South West. Policy to lower atmospheric greenhouse gas concentrations has a beneficial effect, reducing water stress intensity and variability in the concerned basins.The Joint Program on the Science and Policy of Global Change is funded by the U.S. Department of Energy, Office of Science under grants DE-FG02-94ER61937, DE-FG02- 93ER61677, DEFG02-08ER64597, and DE-FG02-06ER64320; the U.S. Environmental Protection Agency under grants XA-83344601-0, XA-83240101, XA-83042801-0, PI-83412601- 0, RD-83096001, and RD-83427901-0; the U.S. National Science Foundation under grants SES- 0825915, EFRI-0835414, ATM-0120468, BCS-0410344, ATM-0329759, and DMS-0426845; the U.S. National Aeronautics and Space Administration under grants NNX07AI49G, NNX08AY59A, NNX06AC30A, NNX09AK26G, NNX08AL73G, NNX09AI26G, NNG04GJ80G, NNG04GP30G, and NNA06CN09A; the U.S. National Oceanic and Atmospheric Administration under grants DG1330-05-CN-1308, NA070AR4310050, and NA16GP2290; the U.S. Federal Aviation Administration under grant 06-C-NE-MIT; the Electric Power Research Institute under grant EPP32616/C15124; and a consortium of 40 industrial and foundation sponsors (for the complete list see http://globalchange.mit.edu/sponsors/current.html

    Climate change adaptation in agriculture: Ex ante analysis of promising and alternative crop technologies using DSSAT and IMPACT

    Get PDF
    Achieving and maintaining global food security is challenged by changes in population, income, and climate, among other drivers. Assessing these challenges and possible solutions over the coming decades requires a rigorous multidisciplinary approach. To answer this challenge, the International Food Policy Research Institute (IFPRI) has developed a system of linked simulation models of global agriculture to do long-run scenario analysis of the effects of climate change and various adaptation strategies. This system includes the core International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT), which is linked to water models (global hydrology, water basin management, and water stress on crops) and crop simulation models. The Global Futures and Strategic Foresight program, a CGIAR initiative led by IFPRI in collaboration with other CGIAR research centers, is working to improve these tools and conducting ex ante assessments of promising technologies, investments, and policies under alternative global futures. Baseline projections from IMPACT set the foundation with the latest outlook on long-term trends in food demand and agricultural production based on projected changes in population, income, technology, and climate. On top of the baseline, scenarios are developed for assessing the impacts of promising climate-adapted technologies for maize, wheat, rice, potatoes, sorghum, groundnut, and cassava on yields, area, production, trade, and prices in 2050 at a variety of scales. Yield gains from adoption of the selected technologies vary by technology and region, but are found to be generally comparable in scale to (and thus able to offset) the adverse effects of climate change under a high-emissions representative concentration pathway (RCP 8.5). Even more important in this long-term climate change scenario are effects of growth in population, income, and investments in overall technological change, highlighting the importance of linked assessment of biophysical and socioeconomic drivers to better understand climate impacts and responses. For all crops in the selected countries, climate change impacts are negative with the baseline technology. All new technologies have beneficial effects on yields under climate change, with combined traits (drought and heat tolerance) showing the greatest benefi

    Process intensification education contributes to sustainable development goals: Part 2

    Get PDF
    Achieving the United Nations sustainable development goals requires industry and society to develop tools and processes that work at all scales, enabling goods delivery, services, and technology to large conglomerates and remote regions. Process Intensification (PI) is a technological advance that promises to deliver means to reach these goals, but higher education has yet to totally embrace the program. Here, we present practical examples on how to better teach the principles of PI in the context of the Bloom's taxonomy and summarise the current industrial use and the future demands for PI, as a continuation of the topics discussed in Part 1. In the appendices, we provide details on the existing PI courses around the world, as well as teaching activities that are showcased during these courses to aid students’ lifelong learning. The increasing number of successful commercial cases of PI highlight the importance of PI education for both students in academia and industrial staff.We acknowledge the sponsors of the Lorentz’ workshop on“Educating in PI”: The MESA+Institute of the University of Twente,Sonics and Materials (USA) and the PIN-NL Dutch Process Intensi-fication Network. DFR acknowledges support by The Netherlands Centre for Mul-tiscale Catalytic Energy Conversion (MCEC), an NWO Gravitationprogramme funded by the Ministry of Education, Culture and Sci-ence of the government of The Netherlands. NA acknowledges the Deutsche Forschungsgemeinschaft (DFG)- TRR 63¨Integrierte Chemische Prozesse in flüssigen Mehrphasen-systemen¨(Teilprojekt A10) - 56091768. The participation by Robert Weber in the workshop and thisreport was supported by Laboratory Directed Research and Devel-opment funding at Pacific Northwest National Laboratory (PNNL).PNNL is a multiprogram national laboratory operated for theUS Department of Energy by Battelle under contract DE-AC05-76RL0183

    Mutational Patterns in RNA Secondary Structure Evolution Examined in Three RNA Families

    Get PDF
    The goal of this work was to study mutational patterns in the evolution of RNA secondary structure. We analyzed bacterial tmRNA, RNaseP and eukaryotic telomerase RNA secondary structures, mapping structural variability onto phylogenetic trees constructed primarily from rRNA sequences. We found that secondary structures evolve both by whole stem insertion/deletion, and by mutations that create or disrupt stem base pairing. We analyzed the evolution of stem lengths and constructed substitution matrices describing the changes responsible for the variation in the RNA stem length. In addition, we used principal component analysis of the stem length data to determine the most variable stems in different families of RNA. This data provides new insights into the evolution of RNA secondary structures and patterns of variation in the lengths of double helical regions of RNA molecules. Our findings will facilitate design of improved mutational models for RNA structure evolution

    The Diversification of the LIM Superclass at the Base of the Metazoa Increased Subcellular Complexity and Promoted Multicellular Specialization

    Get PDF
    Background: Throughout evolution, the LIM domain has been deployed in many different domain configurations, which has led to the formation of a large and distinct group of proteins. LIM proteins are involved in relaying stimuli received at the cell surface to the nucleus in order to regulate cell structure, motility, and division. Despite their fundamental roles in cellular processes and human disease, little is known about the evolution of the LIM superclass. Results: We have identified and characterized all known LIM domain-containing proteins in six metazoans and three nonmetazoans. In addition, we performed a phylogenetic analysis on all LIM domains and, in the process, have identified a number of novel non-LIM domains and motifs in each of these proteins. Based on these results, we have formalized a classification system for LIM proteins, provided reasonable timing for class and family origin events; and identified lineagespecific loss events. Our analysis is the first detailed description of the full set of LIM proteins from the non-bilaterian species examined in this study. Conclusion: Six of the 14 LIM classes originated in the stem lineage of the Metazoa. The expansion of the LIM superclass at the base of the Metazoa undoubtedly contributed to the increase in subcellular complexity required for the transition from a unicellular to multicellular lifestyle and, as such, was a critically important event in the history of animal multicellularity

    Process intensification education contributes to sustainable development goals : part 1

    No full text
    In 2015 all the United Nations (UN) member states adopted 17 sustainable development goals (UN-SDG) as part of the 2030 Agenda, which is a 15-year plan to meet ambitious targets to eradicate poverty, protect the environment, and improve the quality of life around the world. Although the global community has progressed, the pace of implementation must accelerate to reach the UN-SDG time-line. For this to happen, professionals, institutions, companies, governments and the general public must become cognizant of the challenges that our world faces and the potential technological solutions at hand, including those provided by chemical engineering. Process intensification (PI) is a recent engineering approach with demonstrated potential to significantly improve process efficiency and safety while reducing cost. It offers opportunities for attaining the UN-SDG goals in a cost-effective and timely manner. However, the pedagogical tools to educate undergraduate, graduate students, and professionals active in the field of PI lack clarity and focus. This paper sets out the state-of-the-art, main discussion points and guidelines for enhanced PI teaching, deliberated by experts in PI with either an academic or industrial background, as well as representatives from government and specialists in pedagogy gathered at the Lorentz Center (Leiden, The Netherlands) in June 2019 with the aim of uniting the efforts on education in PI and produce guidelines. In this Part 1, we discuss the societal and industrial needs for an educational strategy in the framework of PI. The terminology and background information on PI, related to educational implementation in industry and academia, are provided as a preamble to Part 2, which presents practical examples that will help educating on Process Intensification

    KIAA1109 Variants Are Associated with a Severe Disorder of Brain Development and Arthrogryposis.

    Get PDF
    Whole-exome and targeted sequencing of 13 individuals from 10 unrelated families with overlapping clinical manifestations identified loss-of-function and missense variants in KIAA1109 allowing delineation of an autosomal-recessive multi-system syndrome, which we suggest to name Alkuraya-Kučinskas syndrome (MIM 617822). Shared phenotypic features representing the cardinal characteristics of this syndrome combine brain atrophy with clubfoot and arthrogryposis. Affected individuals present with cerebral parenchymal underdevelopment, ranging from major cerebral parenchymal thinning with lissencephalic aspect to moderate parenchymal rarefaction, severe to mild ventriculomegaly, cerebellar hypoplasia with brainstem dysgenesis, and cardiac and ophthalmologic anomalies, such as microphthalmia and cataract. Severe loss-of-function cases were incompatible with life, whereas those individuals with milder missense variants presented with severe global developmental delay, syndactyly of 2nd and 3rd toes, and severe muscle hypotonia resulting in incapacity to stand without support. Consistent with a causative role for KIAA1109 loss-of-function/hypomorphic variants in this syndrome, knockdowns of the zebrafish orthologous gene resulted in embryos with hydrocephaly and abnormally curved notochords and overall body shape, whereas published knockouts of the fruit fly and mouse orthologous genes resulted in lethality or severe neurological defects reminiscent of the probands' features.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site
    corecore