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ABSTRACT 

Achieving and maintaining global food security is challenged by changes in population, income, and 
climate, among other drivers. Assessing these challenges and possible solutions over the coming decades 
requires a rigorous multidisciplinary approach. To answer this challenge, the International Food Policy 
Research Institute (IFPRI) has developed a system of linked simulation models of global agriculture to do 
long-run scenario analysis of the effects of climate change and various adaptation strategies. This system 
includes the core International Model for Policy Analysis of Agricultural Commodities and Trade 
(IMPACT), which is linked to water models (global hydrology, water basin management, and water stress 
on crops) and crop simulation models. 

The Global Futures and Strategic Foresight program, a CGIAR initiative led by IFPRI in 
collaboration with other CGIAR research centers, is working to improve these tools and conducting ex 
ante assessments of promising technologies, investments, and policies under alternative global futures. 
Baseline projections from IMPACT set the foundation with the latest outlook on long-term trends in food 
demand and agricultural production based on projected changes in population, income, technology, and 
climate. On top of the baseline, scenarios are developed for assessing the impacts of promising climate-
adapted technologies for maize, wheat, rice, potatoes, sorghum, groundnut, and cassava on yields, area, 
production, trade, and prices in 2050 at a variety of scales. Yield gains from adoption of the selected 
technologies vary by technology and region, but are found to be generally comparable in scale to (and 
thus able to offset) the adverse effects of climate change under a high-emissions representative 
concentration pathway (RCP 8.5). Even more important in this long-term climate change scenario are 
effects of growth in population, income, and investments in overall technological change, highlighting the 
importance of linked assessment of biophysical and socioeconomic drivers to better understand climate 
impacts and responses. For all crops in the selected countries, climate change impacts are negative with 
the baseline technology. All new technologies have beneficial effects on yields under climate change, 
with combined traits (drought and heat tolerance) showing the greatest benefit. 

Keywords:  interdisciplinary research, agricultural productivity, yields, climate change, adaptation, 
climate-smart technology 
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1.  INTRODUCTION 

The goal of achieving and maintaining global food security is challenged by a number of stresses directly 
stemming from population and income growth, climate change, and other factors. The agriculture sector 
is confronted with increasing demand, competition for natural resources, and climate impacts, both abiotic 
(for example, changes in temperature and precipitation, and extreme weather events) and biotic (for 
example, damages from pests and diseases). Complicating the challenge, these impacts are characterized 
by large geographic and temporal variability and uncertainty. 

A recent study, using crop simulation models to examine the effects of abiotic stresses, estimated 
that the long-term changes in temperature and rainfall due to climate change could reduce global maize, 
rice, and wheat yields in 2050 by as much as 25 percent compared with 2010 yields in the absence of 
technological change and market effects (Rosegrant et al. 2014).1 Clearly, new technologies will be 
developed and economic agents will respond to changes in prices over time due to changes in population, 
income, and climate. Nevertheless, significant increases in prices may occur. Higher prices would 
particularly hurt marginalized populations, as well as those who spend a large share of their income on 
food. The authors found that a range of technology improvements could help reduce some of these 
adverse impacts. Other recent work has examined the impact of climate change on crop yields, 
production, and prices in 2050 relative to a baseline without climate change. Drawing on multiple climate, 
crop, and economic models, Nelson and others (2013) estimated that yields of four major crops (maize, 
rice, wheat, and soybeans) in 2050 would be around 11 percent lower due to the effects of climate change 
once economic responses were considered. Together, these studies indicate the importance of improved 
modeling to disentangle the complex interactions between multiple drivers of change. Improved 
understanding of emerging technologies must be used to explore alternative strategies to achieve and 
sustain increases in agricultural productivity and food security. 

Basic and applied research in agronomy, soil science, ecology, and entomology has generated a 
wealth of technologies and practices to increase the resilience of agroecosystems to both abiotic and 
biotic stresses, and ultimately to protect and increase productivity. However, in order to inform 
prioritization of research and investments in agriculture, more work needs to be done to explore the 
potential of the various options, for specific crops and under specific local soil and climatic conditions. 
Meeting the challenge of feeding a growing population requires analysis of how to better allocate scarce 
resources, both financial and natural. To this goal, empirical analysis and modeling efforts are useful to 
assess the potential of different technologies and practices to increase agricultural productivity and 
alleviate poverty and hunger, while also using limited resources more efficiently. This analysis needs to 
be performed at various levels of aggregation, from global to national to subnational scales. 

The goal of the CGIAR Global Futures and Strategic Foresight (GFSF) program is to support 
increases in agricultural productivity and environmental sustainability in developing countries by 
evaluating potential long-run impacts of promising technologies, investments, and policy reforms.2 The 
present study focuses on the evaluation of selected promising and alternative technologies for crops, 
specifically drought- and heat-tolerant varieties not currently available at large scale but needed to adapt 
to climatic change, and also analysis of the effects of crop protection measures, with a focus on the 
mealybug pest on cassava. The assessment relies on the Decision Support System for Agrotechnology 
Transfer (DSSAT) family of crop models;3 hydrology and water supply-demand models; and a 
multimarket economic model, the International Model for Policy Analysis of Agricultural Commodities 

                                                      
1 Average percent changes are calculated across two climate change scenarios (MIROC A1B and CSIRO A1B) and across 

rainfed and irrigated cropping systems. 
2 GFSF is a CGIAR initiative led by IFPRI in collaboration with 12 other CGIAR centers, with funding from the Bill and 

Melinda Gates Foundation; the CGIAR Research Program on Policies, Institutions, and Markets; and the CGIAR Research 
Program on Climate Change, Agriculture and Food Security. For more information, visit globalfutures.cgiar.org.  

3 DSSAT is a software application that includes models to simulate the growing stages and productivity output for more than 
28 crops (as of version 4.5) (Hoogenboom et al 2012, and Jones et al 2003) 
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and Trade (IMPACT). These models are linked in order to estimate future production, consumption, and 
trade of key agricultural commodities, following different scenarios of climate change, water availability, 
and population and income growth (among other factors). The result is a powerful simulation tool to 
assess the potential impact of selected promising technologies on some of the world’s most important 
agricultural commodities. 

The current analysis improves on previous research by incorporating detailed location-specific 
data; climate, soil type, crop variety, and other critical variables; detailed models of crop, hydrology, and 
water supply and demand; improved measurement of effects on human welfare; and the impact of 
potential agricultural investments on economic growth, incomes, and poverty alleviation. 
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2.  APPROACH 

Ex ante analysis of technologies and markets several decades into the future requires a flexible scenario–
based approach, which involves assessment of the impacts of long-run drivers (such as changes in 
population, incomes, and climate) whose nature is still uncertain and of technologies (such as drought- 
and heat-tolerant crop varieties) that are still being developed. To do this, we rely on a suite of linked 
crop, water, and economic simulation models to analyze the performance of new crop varieties with 
desirable traits that are currently being developed but not yet widely available. The models provide a 
framework for analyzing alternative scenarios about how population, income, climate, and technologies 
may change over time. The projections in the various scenarios are not “predictions” or “forecasts” but 
instead are simulated scenarios conditional on different sets of assumptions regarding potential drivers of 
change. 

New Promising and Alternative Crop Varieties 
In view of the climate change challenges discussed in the introduction, GFSF team members in four 
participating CGIAR centers—the International Maize and Wheat Improvement Center (CIMMYT), the 
International Potato Center (CIP), the International Crops Research Institute for the Semi-arid Tropics 
(ICRISAT), and the International Rice Research Institute (IRRI)—identified drought and heat tolerance 
traits as priorities to be simulated for maize, wheat, rice, potatoes, sorghum, and groundnut. Table 2.1 
summarizes the traits and regions that the GFSF participating centers prioritized. Each center also 
identified target areas where varieties with these traits are expected to be adopted. CIMMYT targeted 
Africa south of the Sahara for drought-tolerant (DT) maize and South Asia for the heat-tolerant (HT) 
technology. For wheat, the DT variety was targeted for adoption in western Asia, the HT variety in South 
Asia, and the drought- and heat-tolerant (DTHT) variety in Argentina and South Africa. Because South 
and Southeast Asia are major rice-producing regions, a DT variety was targeted in both regions. CIP 
targeted DT, HT, and DTHT potato varieties in South Asia, central Asia, and parts of Southeast Asia. 
ICRISAT focused on a DT sorghum variety to be adopted in the semiarid tropics of Asia and Africa. DT, 
HT, and DTHT groundnut varieties were targeted for adoption across 11 countries spanning Asia and 
Africa. 

Cassava is a resilient crop, well adapted to potential future abiotic stresses (temperature and 
precipitation). Therefore, the International Center for Tropical Agriculture (CIAT) focused on modeling 
the effects of an expansion in pest damages and then in pest management practices. For this scenario, the 
introduction of a mealybug pest was simulated in the Southeast Asia region and three different 
management scenarios were tested. These promising crops or management practices will be described 
further in Section 3. 
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Table 2.1 Promising and alternative crops and traits considered in this report 
Crop Trait Center Countries Region name 
Maize Drought tolerance CIMMYT Angola, Benin, Ethiopia, Ghana, Kenya, 

Malawi, Mali, Mozambique, Uganda,  
United Republic of Tanzania, Zambia, 
Zimbabwe 

M1 

 Heat tolerance  Bangladesh, India, Nepal, Pakistan M2 
Wheat Drought tolerance CIMMYT Iran, Turkey W1 
 Heat tolerance  India, Pakistan W2 
 Drought and heat 

tolerance 
 Argentina, South Africa W3 

Rice Drought tolerance IRRI Bangladesh, Cambodia, India, 
Lao People’s Democratic Republic, Nepal, 
Sri Lanka, Thailand 

R1 

Potatoes Drought tolerance CIP Bangladesh, China, India, Kyrgyzstan, 
Nepal, Pakistan, Tajikistan, Uzbekistan, 
Vietnam 

P1 
 Heat tolerance  
 Drought and heat 

tolerance 
 

Sorghum Drought tolerance ICRISAT Burkina Faso, Eritrea, Ethiopia, India, Mali, 
Nigeria, Sudan, United Republic of 
Tanzania 

S1 

Groundnut Drought tolerance ICRISAT Burkina Faso, Ghana, India, Malawi, Mali, 
Myanmar, Niger, Nigeria, Uganda,  
United Republic of Tanzania, Vietnam 

G1 
 Heat tolerance  
 Drought and heat 

tolerance, high yield 
 

Cassava Scenarios include impact 
of mealybug and control 
methods  

CIAT China, India, Indonesia,  
Lao People’s Democratic Republic, 
Myanmar, Thailand 

C1 

Source:  Compiled by authors.  
Notes:  CIMMYT = International Maize and Wheat Improvement Center; CIP = International Potato Center; ICRISAT = 

International Crops Research Institute for the Semi-arid Tropics; IRRI = International Rice Research Institute.  

The IMPACT System of Models 
The International Food Policy Research Institute (IFPRI) has developed a suite of linked economic, water, 
and crop simulation models to do long-run scenario analysis. The economic multimarket model of global 
agriculture, IMPACT, integrates information from climate models (general circulation models, or GCMs), 
crop simulation models (DSSAT), and water models in a consistent equilibrium framework that supports 
long-run scenario analysis. The IMPACT model simulates the operation of national and international 
markets, solving for production, demand, and prices that equate supply and demand across the globe. 
Some of the model communication is one-way, with no feedback links (for example, GCM scenarios to 
hydrology models to crop models), while other links require capturing feedback loops (for example, water 
demand from the economic model and water supply from the water models must be reconciled to estimate 
water stress impacts on crop yields). Figure 2.1 describes the links between the different models that 
constitute the IMPACT network of models. 
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This flexible framework of models supports integrated analysis of the implications of physical, 
biophysical, and socioeconomic trends and phenomena, allowing for varied and in-depth analysis on a 
variety of key issues of interest to policymakers. As a flexible policy analysis tool, IMPACT has been 
used to research linkages between agriculture production and food security at the national4 and regional5 
levels. IMPACT has also been used in commodity-level6 analyses, and has contributed to thematic and 
interdisciplinary scenario-based projects.7 Additional details on DSSAT, IMPACT, and the linkages 
between the two models are provided in Appendix A. 

Promising Crops and Crop Simulation Models 
To analyze the impacts of introducing new climate-resilient crop varieties, we incorporate both the new 
technologies and climate change effects in the IMPACT model. The impacts of new crop varieties are 
first simulated using DSSAT. These process-based models provide a purely biophysical assessment of 
yield changes, which can then be used as inputs to the economic model. The crop models use weather 
data to simulate plant growth, providing the entry point for climate change scenarios to be added to the 
models. The characteristics of particular varieties or cultivars are encoded in genetic parameters within 
the crop models, providing a way to create new alternative cultivars that reflect potentially desirable 
traits. Management specifications (for example, planting dates, irrigation plans, tillage regimes, and so 
on) open the possibility of representing further technology options. Once these are defined, the crop 
model can be run on a gridded basis across the relevant geographic regions, treating each pixel as an 
individual field. 

Figure 2.1 The IMPACT system of models 

 
Source:  Authors. 
Notes:  DSSAT = Decision Support System for Agrotechnology Transfer; GHM = global hydrological model; IMPACT = 

International Model for Policy Analysis of Agricultural Commodities and Trade; ISI-MIP = Inter-Sectoral Impact Model 
Intercomparison Project. 

                                                      
4 For example, (1) Africa Agriculture and Climate Change Research Monographs: Waithaka and others (2013); Hachigonta 

and others (2013); Jalloh and others (2013); and (2) a variety of country reports such as Takle and others (2013) and Ye and 
others (2014). 

5 For example, (1) food security issues in the Arab region (Sulser et al. 2011); and (2) the discussion paper Looking Ahead: 
Long-Term Prospects for Africa's Food and Nutrition Security (Rosegrant et al. 2005). 

6 For example, (1) “Alternative Futures for World Cereal and Meat Consumption” (Rosegrant, Leach, and Gerpacio 1999); 
(2) “Global Projections for Root and Tuber Crops to the Year 2020” (Scott, Rosegrant, and Ringler 2000); (3) Livestock to 2020: 
The Next Food Revolution (Delgado et al. 1999). 

7 For example, (1) the IFPRI-IWMI book World Water and Food to 2025: Dealing with Scarcity (Rosegrant, Cai, and Cline 
2002); (2) food security and climate change (Nelson et al. 2010); (3) global assessments such as the International Assessment of 
Agricultural Science and Technology for Development (IAASTD 2009), World Development Report 2008: Agriculture for 
Development (World Bank 2007), the CGIAR’s Strategic Results Framework (SRF Process Team 2009), and the Agriculture 
Model Intercomparison and Improvement Project (Nelson et al. 2013). 
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A final yield map is constructed by determining where the alternative cultivar could be beneficial. 
The particular parameters defining the cultivars are obtained from known values in the literature, 
calibrated based on raw experimental data, or deduced by modifying previously calibrated varieties to 
reflect known characteristics in the absence of quality trial data. Each cultivar may have specific details 
concerning planting densities, spacing, time to harvest, and so on. Additionally, rules must be developed 
to allocate the desired total fertilizer application throughout the growing season (for example, all at the 
beginning or in split applications). Irrigation also needs to be specified. For use in IMPACT, the irrigation 
cases are meant to reflect a minimum water stress situation. Any constraints on water availability and the 
associated yield penalties are included in the water allocation and stress model that is part of the IMPACT 
suite of models. 

Once the pixel-level yields are generated, they are aggregated to the regional level for use in 
IMPACT. Using maps of existing production areas by crop and water source, we compute the area-
weighted average yield typical of each subnational unit. From these yields, yield growth rates are 
calculated and applied into the IMPACT model as biophysical “shifters,” which include the effects of 
climate and specific promising technologies. These biophysical shifters are combined in IMPACT with 
other productivity shifters, called intrinsic productivity growth rates (IPRs), which summarize general 
trends on improvements in crop yields due to new technologies and management practices (discussed 
further below).  

For this report, the crops modeled on a global grid are rice, wheat, maize, groundnut, soybeans, 
potatoes, and sorghum. Three alternative varieties of the crops have been modeled. A drought tolerance 
mechanism involving deeper and more efficient roots has been applied to all of the crops except soybeans 
(not part of the original set of mandated crops in CGIAR). Heat tolerance has been modeled for wheat, 
maize, and potatoes. Drought tolerance was combined with heat tolerance for wheat, maize, and potatoes. 
Finally, the combination of drought tolerance, heat tolerance, and a high-yielding variation has been 
modeled for groundnut and sorghum. 

The IMPACT Multimarket Model 
The IMPACT model was developed at IFPRI at the beginning of the 1990s to address a lack of long-term 
vision and consensus among policymakers and researchers about the actions that are necessary to feed the 
world in the future, reduce poverty, and protect the natural resource base. Over time, this economic model 
has been expanded and improved, and IMPACT is now a network of linked economic, water, and crop 
models. At IMPACT’s core is the original partial equilibrium multimarket model of global production, 
demand, and trade, which is linked to a suite of water models. The multimarket model focuses on national 
and global markets, including those of 159 countries.8 Agricultural production is specified by models of 
land supply, allocation of land (irrigated and rainfed) to crops, and determination of yields (which is 
described in more detail below). Production is modeled at a subnational level, including 320 regions 
called “food production units” or FPUs. The FPUs are defined to link to the water models and correspond 
to river basins within national boundaries—154 basins and 159 countries. 

The multimarket model simulates 62 agricultural commodity markets, which represent the bulk of 
food and cash crops. The multimarket model is integrated with the IMPACT water models, which 
simulate the availability of water for irrigation and the effects of changes in water availability on 
agricultural production. Similar to the global multimarket model, the water models operate at 
disaggregated scales. However, the regions of interest for the water models are hydrological basins (Nile, 
Amazon, Mississippi, and so on), of which there are 154. To allow communication between the 
multimarket and water models, the IMPACT suite of models operates on a subnational unit, focusing on 
the 320 FPUs created by the intersection of the 159 geopolitical and 154 hydrological regions.  
  

                                                      
8 Some “countries,” for example Other Indian Ocean, are aggregates designed to achieve complete global coverage.  
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The IMPACT core is additionally connected to a series of modules integrating information from 
climate models (GCMs), crop simulation models, population and demographic models, and economic 
growth models. These models are not dynamically linked in the way the water and multimarket models 
are, but instead their results operate only in one direction, serving as IMPACT scenario inputs. Figure 2.1 
describes the links between the different models that constitute the IMPACT system of models. All 
models except the climate models are run by IFPRI. 

Climate and Economic Scenarios to 2050 
The climate and economic scenarios used in IMPACT draw on work developed for the Intergovernmental 
Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) (IPCC 2013). The climate model results 
used are the trend-preserving bias-corrected projections developed for the First Inter-sectoral Impact 
Model Intercomparison Project (ISI-MIP) (Hempel et al. 2013) based on the climate models experiment 
run for the Fifth Coupled Model Intercomparison Project (CMIP5) (Taylor, Stouffer, and Meehl 2012). 
The current GCMs used for IMPACT are HadGEM2-ES (Jones et al. 2011), IPSL-CM5A-LR (Dufresne 
et al. 2013), MIROC-ESM-CHEM (Watanabe et al. 2011), and GFDL-ESM2M (Dunne et al. 2012). 

Economic scenarios used in IMPACT are based on the Shared Socioeconomic Pathways (SSPs) 
(O’Neill et al. 2014) developed for AR5. We use the projections of the International Institute for Applied 
Systems Analysis (IIASA) for population and those of the Organization for Economic Co-operation and 
Development (OECD) for gross domestic production (GDP) (Chateau et al. 2012).  

Overall we compare a no-climate-change scenario (which is noted as the baseline below) and a 
climate change scenario that is expected to cause significant changes to the agricultural system. The SSP2 
is a middle-of-the-road projection and is used in all of the scenarios included in this report. For climate 
change projections, we use a scenario that results from the GFDL-ESM2M climate model (noted as 
climate change scenario below) under an RCP of 8.5 (Meinshausen et al. 2011; Riahi et al 2011). This 
climate scenario was chosen for this analysis because it appeared to be on average across the globe the 
driest of the four GCMs considered.  

Figures 2.2, 2.3, and 2.4 describe changes in temperature, precipitation, and evapotranspiration in 
2050 under the climate change scenario compared with an unchanged 2005 climate. As shown in Figure 
2.2, the temperature increase is between 1.5 and 2.5 degrees for most major agricultural areas of the 
world, with some areas showing even stronger increases, especially in the northern latitudes and 
Australia. Precipitation changes vary significantly by region, as seen in Figure 2.3. Regions with large 
declines in annual precipitation include the Mediterranean region, South America, northern India, and 
Australia, whereas North America and much of eastern and central Asia would expect greater 
precipitation. Figure 2.4 shows the change in potential evapotranspiration (PET) for the climate change 
scenario as calculated by the IMPACT Global Hydrology Model (IGHM). As expected, the map 
resembles the temperature change map (Figure 2.2), with PET increasing by 3 to 5 percent annually in 
most areas.  
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Figure 2.2 Change in temperature in 2050 in the climate change scenario compared with the 
baseline in 2050 (in degrees Celsius) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source:  Authors’ calculations. 

Figure 2.3 Change in precipitation in 2050 in climate change scenario compared with the baseline 
in 2050 (percent) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source:  Authors’ calculations. 
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Figure 2.4 Change in potential evapotranspiration in 2050 in the climate change scenario compared 
with the baseline in 2050 (percent) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source:  Authors’ calculations. 

Figures 2.5, 2.6, and 2.7 detail how climate shocks to crop yields are estimated, using rainfed 
wheat cultivation as an example. It should be noted that these figures reflect only biophysical effects of 
climate and do not yet include market effects from IMPACT. All maps show the relative difference in 
crop yields computed for the climate change scenario in 2050 as compared with the crop yields in an 
unchanged 2005 climate. For example, a -20 percent change in water stress impact means that the wheat 
yield in 2050 under the climate change scenario will be reduced by 20 percent compared with the yield in 
2050 under the baseline scenario (that is, the non–climate change scenario).  

Figure 2.5 Temperature stress impact on rainfed wheat yields in climate change scenario before 
market effects are considered (in percent change compared with 2050 base value) 

 
Source: Authors’ calculations. 
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Figure 2.6 Water stress impact on rainfed wheat yields in climate change scenario before market 
effects are considered (in percent change compared with 2050 base value) 

 
Source:  Authors’ calculations. 

Figure 2.7 Total climate stress impact on rainfed wheat yields in climate change scenario before 
market effects are considered (in percent change compared with 2050 base value) 

 
Source:  Authors’ calculations. 

Climate shocks consist of two different components, temperature stress and water stress. We run 
DSSAT under two management assumptions (irrigated and rainfed), which allows us to isolate the 
temperature stress and water stress globally. Figure 2.5 illustrates the yield stress to rainfed wheat 
globally. It should be noted that climate change may not always be negative. Temperature increases in 
higher latitudes may lengthen the growing season and lead to higher yields.  

The IMPACT Crop Water Allocation and Stress Model (ICWASM) calculates the crop-specific 
water stress for both irrigated and rainfed crops, which determines the water stress–induced shock (Figure 
2.6). For rainfed wheat under climate change, the patterns are heterogeneous but follow loosely the 
patterns of precipitation change. These two shocks are multiplied to create an overall climate shock 
applied to the base yield of the crop (Figure 2.7). Under the climate change scenario, rainfed wheat sees 
its yield decrease in Latin America, the Mediterranean basin, southern Africa, India, central China, and 
Australia (among others) but increase in North America, northern Europe, and Siberia. These patterns are 
specific to the GFDL model and denote the particular representation of climate change at the time of the 
year when rainfed wheat is grown. Other models and other crops would show different patterns. 
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3.  NEW PROMISING AND ALTERNATIVE TECHNOLOGIES 

We used DSSAT to simulate improved varieties of maize, rice, wheat, sorghum, and groundnut, as well 
as changes in yields following the adoption of these varieties in specific geographical areas of the world 
before market effects are considered (refer to Table 2.1). As mentioned in the methodology section, the 
DSSAT simulations were performed under the GDFL climate change scenario and, through the changes 
in yields, they capture the interaction of the improved varieties with biophysical conditions, specifically 
soil type and climate conditions. Results of these scenarios are described in Section 4. 

Maize 
Maize is the major food, feed, and industrial crop globally, and the leading staple food crop in many 
developing countries. The area coverage, production, and yield of maize have increased over the last 50 
years, and much of the increase was recorded in the developing world. Despite these improvements, 
demand for maize has been outpacing production, partly due to growing demand (for food, feed, and 
energy and other industry). The demand for maize is expected to double by 2050, which signals the need 
to drastically increase productivity. Yet maize production and productivity is constrained by several biotic 
and abiotic factors whose magnitudes are expected to increase under climate change. The major abiotic 
constraints are recurrent drought, low soil fertility, high soil acidity, soil erosion, heat stress, and 
waterlogging. Climate change is exacerbating the existing problems and posing new challenges (Pingali 
and Pandey 2000; Shiferaw et al. 2011; Cairns et al. 2012). Insect pests, diseases, and weeds are the most 
common biotic challenges. 

Most farmers in Africa rely on rainfall to grow maize; hence, production is very vulnerable to 
climate shocks, and dry conditions can have disastrous consequences. In 2011, more than 12.5 million 
people were affected by drought that ravaged the Horn of Africa. Through the Drought-Tolerant Maize 
for Africa (DTMA) initiative, CIMMYT, IITA (the International Institute for Tropical Agriculture), and 
their partners have developed DT varieties adapted to the various ecologies of Africa. The DT maize 
varieties (both hybrids and open-pollinated varieties) provide insurance against climate risks and are 
currently being deployed across 13 African countries (Angola, Benin, Ethiopia, Ghana, Kenya, Malawi, 
Mali, Mozambique, Nigeria, Tanzania, Uganda, Zambia, and Zimbabwe) (Shiferaw et al. 2014). It has 
been estimated that DT maize varieties have 30 to 40 percent better yield under severe stress than 
commercial varieties. Additionally, under optimal rainfall conditions, these varieties match or exceed the 
yields of popular commercial varieties. In 2010 DT maize occupied close to 1.5 million hectares in Africa 
(Prasanna et al. 2012). 

In recent years, evidence has emerged demonstrating the negative effect of high temperatures on 
the performance of maize. Research in Africa south of the Sahara has shown that a decrease in rainfall by 
20 percent is less detrimental to maize yields than a 2-degree Celsius increase in temperatures (Lobell and 
Burke 2010). Elevated temperatures impact maize yields by shortening the life cycle, reducing light 
interception, and increasing sterility (Stone 2001; Cairns et al. 2012). Heat stress under future climate is 
also expected to affect large maize-growing areas in South Asia. In 2013, CIMMYT and its partners 
launched the Heat-Tolerant Maize for Asia (HTMA) initiative. The goal is to use conventional breeding 
to develop maize germplasm with tolerance to heat stress, specifically for the South Asia region. 

Using the CERES (Crop Environment Resource Synthesis) maize model embedded in DSSAT, 
CIMMYT assessed the potential yield benefits of incorporating DT and HT traits. These traits were 
modeled by identifying characteristics that are suspected to provide improved performance. For example, 
root mass is thought to be an important indicator for drought tolerance; consequently, the DT variety was 
implemented in DSSAT by simulating an increase in the share of root mass within a unit volume of soil 
and making the plant better able to extract water from the soil. 
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The countries targeted by the DTMA initiative are the same used in this study to assess the –ex 
ante impact of DT maize across African countries (Figure 3.1). We assume all the targeted countries 
begin adoption of DT maize varieties in 2013, with slower adoption in the early years than in the later 
years, reaching 30 percent of maize area adopting DT varieties by 2050. 

The countries targeted by the HTMA initiative and used in this study to assess the impact from 
adoption of HT maize varieties are Bangladesh, Nepal, India, and Pakistan. Adoption in all four countries 
is expected to reach a maximum of 30 percent of maize area in 2032, with adoption starting in 2017. 
Similar to the DT technology adoption, adoption of HT varieties is expected to be slower in earlier years. 

Figure 3.1 Countries whose adoption of alternative maize varieties is simulated in this analysis 

 
Source:  Authors. 
Note:  Light gray = drought tolerance; dark gray = heat tolerance. 

Wheat 
Wheat is one of the most important staple foods across the globe; it provides 20 percent of total calories 
and proteins consumed by humans globally (Braun, Atlin, and Payne 2010; Curtis, Rajaram, and Gómez 
Macpherson 2002, 602; Shiferaw et al. 2011). Fifteen countries accounted for 80 percent of global wheat 
production between 2007 and 2011; and over the same period 28 countries consumed 80 percent of 
wheat. 

Wheat is an important food and cash crop for populations in the developing world. Today, 72 
percent of wheat produced is consumed in the developing world. Developing countries, however, produce 
only 48 percent of global wheat production, meaning that many developing countries must rely on global 
trade to satisfy their total wheat demand. The major wheat-producing regions in the developing world are 
central and western Asia and North Africa, East and Southeast Asia, and South Asia. 

Wheat production across the developing world faces various challenges, including stagnating 
yields, distorted national agricultural policies that hinder the adoption of improved wheat technologies by 
farmers, increased water scarcity, and increasing fertilizer prices. In addition, climate change is projected 
to bring about new abiotic and biotic stresses. Rising temperatures negatively affect wheat production 
and, in low-latitude countries, wheat production losses from global climate change are expected to be 
higher than for any other staple crop (CIMMYT and ICARDA 2011, 189). Climate change might also 
lead to new or more virulent races of wheat pests and diseases. The incidence of Ug99 (a race of wheat 
stem rust) demonstrates the importance of such threats to global wheat production (Singh et al. 2011). 

Various studies have shown that international wheat breeding conducted by CIMMYT and its 
partners has contributed substantially to increasing wheat production in the developing world in the face 
of various stresses (Heisey, Lantican, and Dubin 2002, 73; Lantican, Dubin, and Morris 2005, 54). Some 
of the knowledge and tools needed to address the new challenges brought by climate change include the 
following: 
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1. Characterization of wheat-growing regions affected by the stresses brought by climate 
change 

2. Identification and propagation of the trait or combination of traits most needed to address 
the new or augmented stresses (both abiotic and biotic) 

3. Making available genetic resources to allow selection of the proper traits from a wider 
pool of mechanisms for adaptation to stress (these resources can be used for strategic 
crossing/breeding)  

4. Development of tools to facilitate yield dissection in terms of both genetic and 
physiological elements 

Some of the promising wheat technologies being developed through international wheat breeding 
include wheat tolerant to drought stress, heat stress, and combined heat and drought stress. The CSM-
CERES wheat model was used to assess the potential yield benefits of DT, HT, and DTHT wheat 
varieties. In this study, targeted regions for these three technologies were chosen among the developing 
countries that stand to be most vulnerable to the abiotic stresses due to climate change (see Figures 2.5, 
2.6, and 2.7). More specifically, DT wheat is targeted for Turkey and Iran, HT wheat is targeted for India 
and Pakistan, and DTHT wheat is targeted for Argentina and South Africa (Figure 3.2). 

Figure 3.2 Countries whose adoption of alternative wheat varieties is simulated in this analysis 

 
Source:  Authors. 
Note:  Medium gray = drought tolerance; dark gray = heat tolerance; light gray = drought and heat tolerance. 

Adoption of the promising wheat technologies in the targeted countries is expected to start in 
2015 for DT wheat, 2020 for HT wheat, and 2022 for DTHT wheat. For all technologies, adoption is 
expected to be quicker in the initial years. The maximum adoption rate of the promising technologies is 
35 percent of wheat area for DT wheat and 30 percent for each of the other technologies. 

Rice 
Rice is the staple food for more than half of the world’s population. Approximately 3.3 billion people 
depend on rice for more than 20 percent for their daily caloric intake. Rice is a critical economic crop 
with nearly 1 billion people depending on rice for their livelihood. Global rice production is one of the 
great success stories of the Green Revolution, having more than doubled since 1965 (from 256 million to 
680 million tons by 2008, according to the Food and Agriculture Organization of the United Nations, 
(2012). Nevertheless, rice productivity is facing a variety of biotic and abiotic stresses that threaten these 
gains. Climate change further threatens rice productivity mostly from water shortages, low water quality, 
thermal stress, rising sea levels, and extreme weather events. To meet the demand of a growing global 



 

14 

population, 25 percent more rice may be needed by 2050 compared with today. Therefore, increasing rice 
yields while using less water, chemicals, land, and labor is a critical challenge. 

Rice is produced under a variety of agromanagement systems (see Figure 3.3), and while irrigated 
rice is the more productive, rainfed production systems are very important, and are the most at risk to 
climate change. It is these rainfed production systems that were targeted with the modeling of DT rice 
varieties. More than 90 percent of rice is produced and consumed in Asia, and rainfed rice is important 
economically and for food security in South and Southeast Asia, which is where IRRI focused on 
modeling the DT rice varieties (Figure 3.4). 

Figure 3.3 Global rice production by production system (percentage of total cultivated area) 

 
Source:  Singh (2009). 

Figure 3.4 Countries whose adoption of an alternative rice variety is simulated in this analysis 

 
Source:  Authors. 
Note:  Gray = drought tolerance adoption. 

Potatoes 
Since their diffusion from the Andean region of South America in the 16th century, potatoes have become 
the third most important food crop in the world in terms of human consumption, following only rice and 
wheat. In 2009, world production reached 330 million tons, of which 18 million tons were produced in 
Africa, 16 million tons in South and Central America, 59 million tons in South and West Asia, 9 million 
tons in central Asia and the Caucasus, and 89 million tons in East Asia and the Pacific (FAO 2011). 
While total production area has declined slightly for the world as a whole, the importance of potatoes in 
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developing countries has steadily increased, reflecting a shift in production away from developed 
countries. The total harvested area was almost 20 million hectares in 2009, of which more than half was 
in developing countries. This growth in area in developing countries involves a greater diversity of 
agroecological zones and a greater number of varieties adapted to these conditions. The growth of 
production in developing countries also reflects the fact that potatoes are the one commodity in the 
developing world with consistent increases in quantities consumed per capita (Bruinsma 2003). 

By providing income generation opportunities as a cash crop, potatoes contribute to alleviating 
poverty. Further, potatoes represent an important source of energy, with a high delivery of energy per unit 
of land, water, and time, and are a valuable source of minerals and vitamins for the diet (Anderson et al. 
2010). 

During the food price crisis in 2007/2008, potato prices were significantly less affected by the 
price increases in international markets than were prices of other crops (FAO 2008), highlighting the 
contribution of the crop to a more stable world food system in regions with high incidences of poverty, 
malnutrition, and food insecurity, such as the tropical highlands of Africa, the Andes of South America, 
or the Indo-Gangetic basin of southern Asia (Thiele et al. 2010). 

A broad range of factors affect potato productivity. The potential yield level is determined by a 
variety’s genetic characteristics, including its growth, tuberization, and partitioning response to prevailing 
environmental conditions such as day length, temperature, soil fertility, and availability of water. Actual 
productivity and yield stability are influenced by abiotic factors, such as drought and heat, as well as 
biotic factors, including diseases such as late blight (the most important biotic constraint to potato 
production in the world), and a number of important viruses that can affect yields directly or by reducing 
seed quality (Lutaladio et al. 2009). Drought is the major abiotic factor affecting potato productivity. 
Depending on the genotype and the timing and extent of drought, water stress might accelerate or delay 
flowering and tuberization, or slow down canopy growth and tuber fill or bulking. A second important 
abiotic factor affecting both total potato yield and yield variability is temperature. High temperature 
affects the rates of photosynthesis and respiration, with the former being reduced and the latter increased. 
Increases in either day or night temperature above optimal levels (18 to 20 degrees Celsius) reduce tuber 
yields, with high night temperature being deleterious to tuber bulking and dry matter accumulation. High 
temperatures also cause physiological disorders such as irregular shape, premature sprouting, cracking, 
and elevated concentrations of glycoalkaloids in tubers, leading to bitter tubers that can be toxic (Gastelo, 
Kleinwechter, and Bonierbale 2014; Levy and Veilleux 2007). 

One of the flagship technologies defined by CIP and the CGIAR Research Program on Roots, 
Tubers and Bananas is the “agile” potato, a variety with short growth cycles of 70 to 90/100 days to be 
incorporated into the rice- and wheat-based cropping systems of central and South Asia and parts of 
China. Adopted by poor and vulnerable rural households, it is expected to contribute to the sustainable 
intensification of cereal-based cropping systems and thereby to improve farm revenues, reduce 
vulnerability, improve diets, and bring income opportunities from on- and off-farm employment through 
emerging markets for fresh potatoes and in processing industries (CIP 2013). While the shorter growth 
cycle is the defining characteristic of this product, this variety is also characterized by heat and drought 
tolerance and virus resistance. Given the current capabilities of the crop modeling framework, the current 
assessment focuses on the elementary traits of heat and drought tolerance and a combination of these. 

For central Asia, the baseline cultivar used for the assessment is Atlantic. The improved cultivar 
is expected to be introduced into wheat-based irrigated systems of the temperate lowlands and the main 
cropping season of the temperate highlands of Tajikistan, Kyrgyzstan, and Uzbekistan. In South and 
Southeast Asia, traits of tolerance to heat, drought, or both are expected to be a component of improved 
potato varieties to be introduced into rice-based systems of Bangladesh, East India, the plains of Nepal, 
and North Vietnam; into wheat-based systems in North and West India and Pakistan; and into potato-
potato systems of Bangladesh, India, and Pakistan. The crop agroecology can be described as a 
subtropical lowland environment. The baseline cultivar for that region is Kufri Bahar. In China, four 
provinces in Southwest and central China are the target region for the improved varieties. The provinces 
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under consideration are Yunnan, Guangxi, Gansu, and Qinghai. The baseline cultivar for the Chinese 
provinces is Tacna. 

In all regions, heat tolerance, drought tolerance, and a combination of the two is modeled in the 
DSSAT-SUBSTOR potato model (Figure 3.5). Crop model coefficients for the three technologies were 
calibrated based on a set of yield trial data obtained from CIP breeders. Heat tolerance is modeled by 
adjusting the genetic coefficient that governs the heat response of the plant for the three baseline cultivars 
(Atlantic, Kufri Bahar, Tacna) by +2 degrees. Drought tolerance was modeled by increasing the root 
density and the plant’s capacity to absorb water from the soil. Adoption estimates were taken from the ex 
ante assessment in Fuglie (2007) for similar technology. Where data were not available, adoption 
estimates for virus-resistant varieties were used as a proxy. 

Figure 3.5 Countries whose adoption of alternative potato varieties is simulated in this analysis 

 
Source:  Authors. 
Note:  Gray = drought tolerance, heat tolerance, and drought and heat tolerance adoption. 

Sorghum 
More than half a billion people in the world rely on sorghum as a dietary mainstay and, given its diversity 
of uses, as an important source of income. The grain is used mainly for food by many poor people, and 
the stalks are a vital source of fodder for livestock. Sorghum is also used for a wide range of industrial 
purposes. Sorghum grain is nutritious and contains relatively high levels of iron and zinc. This cereal 
grows over a wide range of temperatures and elevations. Given that sorghum requires less water, it is 
usually grown instead of maize in the hotter and drier areas of Africa, South Asia, and Central America. 
This hardy crop is now grown on some 42 million hectares in countries spread across Africa, Asia, 
Oceania, and the Americas. In India, it is grown on 8.02 million hectares with an average productivity of 
920 kilograms per hectare. In West Africa, Nigeria is the largest producer of sorghum, followed by 
Burkina Faso and Mali. In Mali, it is grown on 1.06 million hectares with an average productivity of 
1,020 kilograms per hectare (mean of 2006–2010 production data, FAO 2012). 

Major biotic constraints for sorghum production include shoot fly, stem borer, head bug, and 
aphid insect pests, as well as grain mold, anthracnose diseases, leaf blight, weed competition, and (in 
Africa) the parasitic plant Striga spp. (ICRISAT 2004). Major abiotic stresses are drought, high 
temperatures, acid soils, and low soil fertility. As droughts and temperature hikes intensify with projected 
climate changes, they are expected to have even more negative effects on productivity, especially in the 
arid and semiarid regions (Sultan 2012). In the semiarid tropics, where sorghum is currently grown during 
the rainy season, the mean crop-season temperatures are already close to or above these optimum 
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temperatures. Based on a metadata analysis, Knox and colleagues (2012) assessed the impact of projected 
climate change by the 2050s on sorghum productivity for both Africa and South Asia. They reported a 15 
percent decrease in sorghum yield across Africa and 11 percent across South Asia. Changes in rainfall 
coupled with a rise in temperature may reduce the length of the growing period as determined by the 
duration of soil water availability. Therefore, in order to achieve higher and more stable yields, it will be 
critical to breed varieties that not only can better withstand drought conditions, but also can reach 
maturity within the period of water availability. For the Global Futures study, ICRISAT has worked to 
simulate the traits of a DT sorghum cultivar across Burkina Faso, Eritrea, Ethiopia, India, Mali, Nigeria, 
Sudan, and Tanzania (Figure 3.6). 

Figure 3.6 Countries whose adoption of an alternative sorghum variety is simulated in this analysis 

 
Source: Authors. 
Note: Gray = drought tolerance adoption. 

Using the CSM-CERES sorghum model and the alternative cultivar approach, ICRISAT assessed 
the potential benefits of altering crop life cycle, enhancing yield potential traits, and incorporating drought 
and heat tolerance in the commonly grown cultivar types at two sites each in India (cv. CSV 15 at both 
Akola and Indore) and Mali (cv. CSM 335 at Samanko and cv. CSM 63E at Cinzana) (Singh, Nedumaran, 
Traore, et al. 2014). Decreasing the crop life-cycle duration of cultivars by 10 percent decreased yields at 
all the sites under both current and future climates. In contrast, increasing the crop life-cycle duration by 
10 percent increased yields by up to 12 percent at Akola, 9 percent at Indore, 8 percent at Samanko, and 
33 percent at Cinzana. Enhancing yield potential traits (radiation use efficiency, relative leaf size, and 
partitioning of assimilates to the panicle each increased by 10 percent) in the longer-cycle cultivars 
increased the yields by 11 to 18 percent at Akola, 17 to 19 percent at Indore, 10 to 12 percent at Samanko, 
and 14 to 25 percent at Cinzana under the current and future climates of the sites. Except for the Samanko 
site, yield gains were larger with incorporated drought tolerance than with heat tolerance under the current 
climate. However, under future climates, yield gains were increased by incorporating heat tolerance at 
Akola, Samanko, and Cinzana, but not at Indore. Net benefit of incorporating both drought and heat 
tolerance in alternative cultivars was an increase in yield of up to 17 percent at Akola, 9 percent at Indore, 
7 percent at Samanko, and 16 percent at Cinzana under climate change. The study concluded that 
different combinations of traits will be needed to increase and sustain productivity of sorghum in current 
and future climates at these target sites in India and West Africa.  
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Groundnut 
Rich in protein and edible oil, groundnut is central to the financial and nutritional well-being of hundreds 
of millions of farmers and consumers across the semiarid tropics. Besides protein and oil, groundnut 
seeds are a rich source of minerals, vitamins, and dietary fiber. The groundnut haulms are used as fodder 
for livestock. Groundnut is currently grown on about 21.8 million hectares worldwide. Global production 
totaled 38.6 million tons, 95 percent of which occurred in developing countries (FAO 201). Major 
producers include China, India, Myanmar, Nigeria, and the United States. Production is concentrated in 
Asia (50 percent of global area and 68 percent of global production) and Africa (46 percent of global area 
and 24 percent of global production). In India, groundnut is mostly grown in rainfed conditions (83 
percent of total groundnut area), during the main rainy season; the remaining 17 percent of area is 
irrigated, especially after the end of the rainy season. While India has the largest area under groundnut 
(6.36 million hectares) in the world, its production (6.5 million tons) and productivity (1,022 kilograms 
per hectare) have remained low, the latter being well below the world average (Birthal et al. 2010, 92). In 
West Africa, Nigeria and Senegal are the largest producers of groundnut, and Mali and Niger are also 
important producers. In Mali, groundnut is grown on 0.29 million hectares with an average production 
and productivity of 0.26 million tons and 880 kilograms per hectare, respectively. In Niger, groundnut is 
grown over a larger area (0.44 million hectares) than in Mali, but with greater fluctuation in production 
due to the variable climate. Average production and productivity of groundnut in Niger are 0.21 million 
tons and 480 kilograms per hectare, respectively (mean of 2001 to 2010 production data reported in FAO 
2012). 

There are many region-specific abiotic and biotic stresses that limit groundnut productivity in 
Asia and Africa. The major diseases are early and late leaf spot, rust, and bacterial wilt (Nigam et al. 
2006). The crop is highly susceptible to an aflatoxin caused by the fungus Aspergillus flavus (Nigam et al. 
2006). Aflatoxins are extremely hazardous to human health and especially harmful to the physical and 
mental development of young children. Other major biotic stresses are sucking insect pests (aphids, 
thrips, and jassids) and foliar-feeding insect pests (groundnut leaf miner, red hairy caterpillar, and pod 
borers) (Nigam et al. 2006). Major abiotic stresses include drought, high temperature, and soil nutrient 
deficiencies. In both Asia and Africa, average temperature during the groundnut growing season is 
already close to or above the upper limit of the optimum temperature range (20 to 30 degrees Celsius) for 
groundnut growth. As climate change accelerates, increasing temperatures may affect growth and 
development of crops, thus impacting potential yields. A critical variable is the number of days a crop is 
exposed to supra-optimal temperatures at critical growth stages, that is, flowering, pollination, or grain 
filling (Prasad et al. 2003). In the semiarid tropical regions, the changes in rainfall coupled with a rise in 
temperature may reduce the length of the growing period and intensify droughts. Therefore, it will be 
important to breed DT cultivars and to match their maturity durations to the period of soil water 
availability for higher and more stable yields. For the Global Futures study, ICRISAT has worked to 
simulate the traits of DT groundnut cultivars, HT groundnut cultivars, and a drought- and heat-tolerant 
high-yielding cultivar (DHTY) across Burkina Faso, Ghana, India, Malawi, Mali, Myanmar, Niger, 
Nigeria, Tanzania, Uganda, and Vietnam (Figure 3.7).  

Using the CROPGRO groundnut model, ICRISAT assessed the potential benefits of 
incorporating DT, HT, and yield-enhancing traits into the commonly grown cultivar types at two sites 
each in India (Anantapur and Junagadh) and West Africa (Samanko, Mali; and Sadore, Niger) (Singh, 
Nedumaran, Ntare, et al. 2014). Increasing crop maturity by 10 percent increased yields by up to 14 
percent at Anantapur and 19 percent at Samanko, and sustained the yields at Sadore. However, at 
Junagadh, the current maturity of the cultivar holds well under future climate. Increasing yield potential 
of the crop by increasing its leaf photosynthesis rate, partitioning to pods, and seed-filling duration each 
by 10 percent increased pod yield by 9 to 14 percent over the baseline yields across the four sites. Under 
the current climates of Anantapur, Junagadh, and Sadore, the yield gains were larger with drought 
tolerance than heat tolerance. Under climate change, the yield gains from incorporating both drought and 
heat tolerance increased to 13 percent at Anantapur, 12 percent at Junagadh, and 31 percent at Sadore. At 

http://en.wikipedia.org/wiki/Aspergillus_flavus
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the Samanko site, the yield gains from drought or heat tolerance were negligible. Therefore, a 
combination of site-specific technologies will be needed to enhance and sustain groundnut productivity in 
the groundnut-growing regions in West Africa and South Asia. 

Figure 3.7 Countries whose adoption of alternative groundnut varieties is simulated in this analysis 

 
Source:  Authors. 
Note: Gray = drought tolerance, heat tolerance, and drought and heat tolerance plus high-yielding variety adoption. 

Cassava 
Cassava (Manihot esculenta Crantz) is a woody shrub native to the American tropics that produces a 
starchy tuberous root. It is the third most important staple crop in the tropics after rice and maize. Global 
production in 2010 was 240 million tons, with the five largest producers of cassava (Nigeria, Brazil, 
Thailand, Indonesia, and the Democratic Republic of Congo) accounting for more than 50 percent of total 
production (FAO 2012). Cassava’s successful introduction to Africa in the 16th century was followed by 
its introduction to the Asian subcontinent and Southeast Asia in the 19th century. Cassava has 
traditionally been a crop of choice for poorer farmers on marginal lands, where its hardiness allows it to 
grow in soils with low fertility and moisture. 

Biotic stresses are the cause of major losses in cassava production. The biggest reported losses 
due to plagues in Latin America and the Caribbean correspond to those caused by cassava bacterial blight. 
Both cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are present in most 
African countries and parts of Asia. CMD is the most severe and widespread, limiting production of the 
crop in Africa south of the Sahara. CMD produces a variety of foliar symptoms that include mosaic, 
mottling, misshapen and twisted leaflets, and an overall reduction in size of leaves and plants. CBSD is a 
damaging disease of cassava plants, and is especially troublesome in East Africa. 

Cassava crops throughout the world are under attack by arthropod pests, causing huge losses to 
farmers in Asia, Latin America, and Africa. Major pests reported in cassava-producing countries include 
cassava green mites and white flies. The specific characteristics of cassava fuel the expansion of pests: 
vegetative reproduction, drought resistance, long life cycle, staggered planting dates, intercropping, and 
more recently, the lack of genetic diversity due to intensification, among others (Bellotti, Campo, and 
Hyman 2012). In Asia the most important pest is the mealybug (P. manihoti). Of the more than 15 
varieties of mealybug attacking cassava in tropical countries, Phenacoccus manihoti and P. herreni are 
what have caused major losses in cassava production. In particular, P. manihoti began to spread through 
Africa in the 1970s, causing severe damage, threatening cassava cultivation in Africa. 
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In a combined effort of IITA, CIAT, and the CIBC (Commonwealth Institute of Biological 
Control), in 1980 scientists found in Paraguay a parasitoid of P. manihoti: A. lopezi. The A. lopezi is a 
tiny wasp that lays its eggs on the mealybug. As they grow inside the mealybug, the wasp larvae feed on 
the mealybug, killing it. This parasitoid has attacked and effectively controlled populations of mealybug 
in South America for centuries. It was successfully introduced in Africa along with three coccinellid 
predators. This strategy succeeded in reducing the mealybug losses from 80 percent down to 5 to 10 
percent (Belloti, Campo, and Hyman 2012), while in controlled simulations the coccinellid predators 
reduced losses by 25 percent (Neuenschwander 2001). Recently, A. lopezi was introduced successfully in 
Thailand to contain the mealybug pest. 

Figure 3.8 Countries whose adoption of alternative pest management practices for cassava is 
simulated in this analysis 

 
Source:  Authors. 
Note:  Gray = region where cassava mealybug and biological control scenarios were targeted. 

The previous sections focused on the impact of promising new technologies that can help farmers 
adapt to the abiotic stresses of climate change; however, technologies that counteract the negative impact 
of biotic stresses such as pests and diseases are also very important. Cassava and the mealybug infestation 
is a particularly good example of a case where we can focus on the effects of biotic stresses and 
management practices. The pest management scenarios designed by CIAT use historical data on the 
effects of the appearance of mealybug in Africa, and the subsequent introduction of the A. lopezi wasp to 
South and Southeast Asian cassava production. The cassava-mealybug scenarios were framed with an 
initial scenario representing an untreated infestation of the mealybug in the entire target area (this 
scenario is simply referred to as “mealybug”). Three biological control scenarios were then specified, 
which reflect each country’s capacity to reduce damages and approach baseline yields (Figure 3.8):  

1. CBIOL1: Thailand, being the world leader in cassava production technology, is assumed 
to aggressively treat the infestation in the first treatment scenario. China also follows 
Thailand’s adoption of the biological controls. 

2. CBIOL2: The remaining countries in the region begin to adopt the control treatment but 
with less efficacy than Thailand and China. 

3. CBIOL3: All targeted countries implement the biological controls effectively and 
approach the preinfestation baseline yields. 
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4.  HOW WILL YIELDS, PRODUCTION, AND PRICES CHANGE? 

The yield changes simulated through the crop models (as described in Section 3) represent the biophysical 
productivity–enhancing potential of the new varieties under specific conditions of soil and climate. In 
reality, a host of other factors influence actual yields. By aggregating the biophysical yield changes from 
the pixel to the food production unit (FPU) level, and using these data as an input into the IMPACT 
model, we are able to simulate impacts that reflect the combination of biophysical effects as well as 
interactions with prices and other economic variables. 

Yields in IMPACT 
The links between results from the crop models (biophysical) and the IMPACT multimarket model 
(economic) involve four different mechanisms. First, the IMPACT model assumes underlying 
improvements in yields over time. These trends are based initially on historical productivity growth rates 
(see Figure 4.1) and are adjusted to reflect expert opinion on future changes in input levels, investments in 
agriculture, and biological limits. These long-run trends, or intrinsic productivity growth rates (IPRs), 
represent the effects of expected increases in inputs, as well as improvements in management practices. 
These IPRs are exogenous to the IMPACT model and are treated as part of its input data (that is, they are 
not solved within the IMPACT multimarket model). 

Figure 4.1 Global average yields (tons per hectare) of maize, rice and wheat, 1961 to 2012 

 
Source:  FAO (2014). 

Second, the IMPACT model includes the simulation of potential adoption of specific new 
technologies (for example, agricultural practices) or new varieties such as those described in Section 3. 
The biophysical yield changes calculated through crop models can be used as “shifters” on top of the 
IPRs. Where positive impacts on production systems are seen, we can estimate the potential pool of 
adopters of the new technology in each FPU. The adoption of the technology in IMPACT is further 
specified by an adoption pathway, which is represented as a logistic function, determining the rate of 
adoption. 

Third, given these adoption functions, the effect of the new technologies on average FPU yields 
will be affected by climate shocks that vary over time. These climate shocks change both temperature and 
water availability. The new crop varieties will vary in their yield reactions to these changes. IMPACT 
captures the effect of changes in water availability through the linked water models (water basin 
management and water stress models). DSSAT provides estimates on the effects of temperature changes 
on yields. These two inputs are combined, resulting in the total impact of climate change and adoption of 
new crop varieties on average yields by crop and region, which are then passed to the IMPACT 
multimarket model.  
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Fourth, the IMPACT multimarket model includes an endogenous link between yields and 
changes in output prices. The underlying assumption is that farmers will respond to changes in prices by 
varying the use of inputs, such as fertilizer, chemicals, and labor, which will in turn change yields. If the 
price of a crop falls, there is less incentive to allocate resources to that crop, and its yield will fall as a 
result. The first three mechanisms involve technology and climate, and are essentially independent of 
prices. We will denote these as “climate and technology” effects below. The fourth mechanism involves 
markets and prices, and we will denote it as “market” effects. 

Table 4.1 shows climate and technology effects and market effects that change productivity in 
2050 compared with 2005, without climate change (NoCC) and under a dry climate scenario (CC).9 
Columns 1 and 2 show climate and technology increases that reflect only the effects of IPRs (that is, the 
contribution of new technology adoption is not included). They also do not include the effect of prices, 
which would be expected to change as production rises. Changes in productivity range across the selected 
crops and regions of adoption from 15 percent to 224 percent in the absence of climate change and 
from -2.7 percent to 177 percent under the climate change scenario (both relative to 2005 yields). 
Increases are largest in the case of DT sorghum and wheat, and smallest for the region where HT wheat is 
simulated (South Asia). Interpreting the impact of climate and changing technologies should be done with 
care because in some cases, especially for wheat in temperate regions, the modeling shows that climate 
change may actually be beneficial in terms of yields compared with a no-climate-change scenario. 

Table 4.1 Impact of productivity growth on baseline yields, percent change between 2005 and 2050 
  Climate and technology  

impacts on yields  
(% change) 

Market impacts  
on yields  

(% change) 
Crop Region Water 

regime 
NoCC 

(1) 
CC 
(2) 

NoCC 
(3) 

CC 
(4) 

Maize M1 Irrigated 68.25 60.44 48.73 46.15 
Rainfed 55.76 46.72 36.46 32.44 

 M2 Irrigated 85.64 46.25 65.99 33.57 
Rainfed 123.54 74.02 96.30 56.03 

Wheat W1 Irrigated 153.21 177.43 141.07 164.25 
Rainfed 89.14 102.17 78.95 91.34 

 W2 Irrigated 103.91 90.61 97.54 85.03 
Rainfed 86.34 86.40 81.06 81.24 

 W3 Irrigated 34.77 15.73 19.01 2.31 
Rainfed 15.20 -2.67 0.75 -14.70 

Rice R1 Irrigated 50.31 26.80 38.42 18.86 
Rainfed 42.87 25.14 29.09 15.36 

Potatoes P1 Irrigated 56.64 53.58 38.46 38.17 
Rainfed 16.09 15.51 3.05 4.34 

Sorghum S1 Irrigated 224.02 123.40 197.09 107.73 
Rainfed 88.37 70.63 72.08 57.89 

Groundnut G1 Irrigated 31.34 17.67 16.53 6.85 
Rainfed 30.70 18.82 16.52 8.30 

Cassava C1 Irrigated 101.56 89.71 81.85 75.45 
  Rainfed 33.18 15.57 22.31 8.72 

Source:  Authors.  
Notes:  Numbers are percent change in baseline yields between 2005 and 2050 under assumed constant climate (NoCC) or under 

climate change (CC). Detailed numbers by country can be found in Appendix D. Values are averaged across all 
countries in the region of adoption. Countries belonging to each region as well as improved variety adopted in each 
region are described in Table 2.1. 

                                                      
9 This scenario is modeled by the GFDL-ESM2M GCM using a RCP of 8.5. 
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As yields rise, we expect that prices will change, and that this in turn will influence farmers’ 
incentives to increase input use or improve management practices. Other things being equal, increased 
production would be expected to lead to lower prices, which would in turn reduce incentives and 
consequently market impacts relative to the climate and technology effects alone. Analyzing this 
combination of effects is a key contribution that the Global Futures project makes by linking biophysical 
and economic impacts on yield changes. The climate and technology impacts and the market impacts on 
yields are presented in columns 3 and 4, respectively, of Table 4.1. They range across the selected crops 
from -0.75 percent to 197 percent in the absence of climate change and from -14.7 percent to 164 percent 
under the climate change scenario (both relative to 2005 yields). Gains are more modest relative to the 
exogenous case, but still double or more relative to 2005 in the case of wheat and sorghum, while 
increasing more slowly or even declining in the region where HT wheat is tested (South Asia). 

Impacts of New Technologies 
In this study we are interested in the impact of promising new technologies that would help farmers adapt 
to climate change and mitigate its impacts by improving the drought tolerance and heat tolerance of 
selected crops, as well as technologies to counteract the negative impact of pests, such as mealybug on 
cassava. The scenarios involve adoption of new technologies only in targeted regions, as identified in 
Table 2.1. Table 4.2 shows the global shares of production for all the crops in the targeted regions, across 
the various simulated technologies, in 2005 and 2050, under NoCC and CC. The simulated crops/regions 
represent 20 to 40 percent of global production in most cases, but less than 10 percent in the case of 
maize. This means that while the new technologies may have significant effects on yields in areas where 
they are adopted, their impact on global prices is expected to be modest. 

The tables in the following sections include the results of the technology scenarios described in 
Section 3. All scenarios were run under the same dry climate scenario modeled using GFDL-ESM2M and 
RCP 8.5. The scenario results have been aggregated at the regional level (see Table 2.1 for reference). 
Appendixes D and E present all of the country-level results.  

Table 4.2 Shares of global production represented by the target regions for the various crops 
  NoCC CC 
Crop Region 2005 2050 2005 2050 

Maize M1 + M2 5.50 5.48 5.50 5.71 
Wheat W1 + W2 + W3 22.98 22.66 22.98 24.46 
Rice R1 34.64 34.53 34.64 37.43 
Potatoes P1 32.77 40.46 32.77 39.63 
Sorghum S1 43.69 40.22 43.69 42.68 
Groundnut G1 34.66 35.52 34.66 35.14 
Cassava C1 27.58 18.72 27.58 18.56 

Source:  Authors.  
Note:  CC = climate change; NoCC = assumed constant climate. The share of global production is obtained by summing the 

global share of production in each of the countries where the new crop variety is being simulated (see Table 2.1). 

Yield Changes without Market Effects 
This section explores the results of adoption of the agriculture technologies described in Section 3. First 
we examine yields changes resulting from the adoption of the new crop varieties (DT, HT, DTHT, and 
DHTY), followed by the yield effects of the biological control scenarios for cassava. All of the exogenous 
yields presented in this section include climate change shocks and IPRs. The complete list of adoption 
rates for each crop in each country and for each technology is in Appendix C. 
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Table 4.3 shows the exogenous yield effects for the different promising varieties. The numbers 
reflect the percent difference in yields between the scenario in which the new variety is adopted and the 
baseline in 2050 before market effects are considered (that is, column 2 in Table 4.1). The values are 
aggregated at the regional level (that is, at the level of each region included in the simulations; the regions 
of interest differ crop by crop). Detailed results by country are presented in Appendix D. 

Table 4.3 Change in regional crop yields (percent difference from 2050 climate change baseline 
without the new technologies) 

 DT HT DTHT DHTY 
Crop Irrigated Rainfed Irrigated Rainfed Irrigated Rainfed Irrigated Rainfed 

Maize 31.81 32.02 111.88 44.46     
Wheat 0.21 5.78 5.66 - 10.20 9.57   
Rice 0.70 1.01       
Potatoes 1.65 6.20 5.67 3.74 15.26 9.90   
Sorghum 1.95 5.21       
Groundnut 0.30 5.74 11.87 7.35   26.99 26.24 

Source:  Authors.  
Notes:  DHTY = drought and heat tolerant, high yield; DT = drought tolerant; DTHT = drought tolerant, heat tolerant; HT = heat 

tolerant. Values are percent change in yield between technology and base in 2050 under climate change. Drought 
tolerance is implemented only under rainfed conditions. Blank cells are those without any scenario input. Refer to Table 
2.1 for details of the regions where the various combinations of crop and “technology” (drought tolerance, heat 
tolerance, and so on) are simulated.  

In general, the HT varieties outperform the DT varieties. This is unsurprising due to the high 
increases in temperature that are expected more uniformly globally under the climate change scenario, 
compared with the greater variation in regional precipitation. It should also be noted that the benefits of 
both traits are underestimated by excluding extreme events. Extreme water stress and heat stress is 
important not only in terms of general trends (greater temperatures, less rainfall), but also in the timing of 
extreme weather events (extreme temperatures during flowering, or drought during filling stages). This 
exclusion likely underestimates the benefits of drought tolerance even more than heat tolerance, because 
we can observe large and uniform temperature increases from the climate model but are unable to observe 
the interannual variation of precipitation that would occur under a drought. Therefore, we are testing the 
DT trait under general water scarcity instead of under drought conditions. (See Appendix A for more 
detailed description of methodology used in this study.) Nevertheless, in regions where the precipitation 
under climate change decreases significantly, the DT varieties begin to increase yields similarly to HT 
varieties, especially under rainfed conditions. For example, in Turkey and Iran, which would experience 
substantial rainfall decreases (Figure 2.3), and where DT wheat was implemented, the yield increases for 
rainfed wheat are nearly 6 percent, comparable to the gains the HT wheat made in irrigated areas of South 
Asia. 

Where combined-trait varieties were tested, these technologies demonstrated significant 
improvements over the adoption of single-trait varieties, which suggests that the benefits of these traits 
are additive if not multiplicative when combined. Potatoes are a particularly good example of this 
stacking of traits, because both DT and HT were implemented in the same region individually, before 
being combined. In the case of rainfed potatoes we observe gains of more than 6 percent for DT and less 
than 4 percent for HT, with nearly a 10 percent gain when DT and HT traits are combined. When water 
constraints are further reduced through irrigation, the gains of these combined traits are even more 
impressive—almost 3 times greater than for HT alone and nearly 10 times greater than for DT alone. 
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Groundnut further illustrates the benefits of stacking beneficial traits, with the DHTY variety not 
only improving drought and heat tolerance but also enhancing yields. The improvements observed using 
this variety more than double to quadruple the improvements observed from only DT and HT varieties. 

The cassava biological control scenarios were designed differently from the new varieties 
scenarios, in that the objective of this technology is not to increase the yield potential of cassava, but 
instead to reduce the negative effect of the infestation scenario (“Mealybug”). The question isn’t so much 
the effectiveness of the technology, which has been proven, but the level of adoption. The greater the 
level of adoption, the closer the yield reductions are to zero, or to pre-infestation levels (Table 4.4).  

Table 4.4 Change in regional cassava yields (percent difference from 2050 climate change baseline 
without the new technologies) 

Scenario Irrigated Rainfed 
Mealybug -12.18 -11.17 
CBIOL1 -12.18 -6.26 
CBIOL2 -4.79 -2.93 
CBIOL3 -1.64 -1.51 

Source:  Authors.  
Notes:  The values in the table indicate the percent change compared with the baseline. The baseline represents an ideal case in 

which cassava has not been exposed to the mealybug pest. The scenarios are as follows: Mealybug = Untreated pest 
infestation. CBIOL1 = Mealybug wasps are applied only in Thailand. CBIOL2 = Mealybug wasps are applied in all 
countries, but less completely than in Thailand. CBIOL3 = Mealybug treatment applied completely in all targeted 
countries. 

In general, these technologies show significant adaptive capabilities, with many of the adopting 
regions mitigating or counteracting the negative climate effects observed. For example, in Table 4.5, the 
M2 region suffers significant yield declines (greater than 20 percent) due to climate but is able to more 
than overcome these negative effects with the adoption of the HT maize variety (yield increases of 40+ 
and 110+ percent). Of the technologies tested, only the sorghum and rice technologies failed to 
significantly bridge the productivity gap created by climate change.  

It is important to note that the regional results can hide a large degree of variability at the country 
level (see Appendixes D and E for complete country results). For example, the benefits of DT rice are 
fairly insignificant in many of the countries within the region of adoption, with most of the productivity 
gains in the region being observed in Sri Lanka and India, where rice yields improve by 3.5 and 1 percent, 
respectively. DT sorghum is another technology that shows significant variation of benefits across 
countries, with much larger improvements observed in Eritrea, Ethiopia, and India than those observed in 
Tanzania. In the case of cassava, the largest decrease in exogenous cassava yields due to mealybug occurs 
in Vietnam under irrigated conditions, which are almost double the negative effects observed in the rest of 
the region. 
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Table 4.5 Comparing climate shocks with the improvements under new technologies 
  % change in 2050 yields 
Crop Region Water 

regime 
CC 
(1) 

CC with 
new technologies 

(2) 
Maize M1 Irrigated -4.64 31.81 

Rainfed -5.80 32.02 
 M2 Irrigated -21.22 111.88 

Rainfed -22.15 44.46 
Wheat W1 Irrigated 9.57 0.21 

Rainfed 6.89 5.78 
 W2 Irrigated -6.52 5.66 

Rainfed 0.03 - 
 W3 Irrigated -14.13 10.02 

Rainfed -15.51 9.57 
Rice R1 Irrigated -15.64 0.70 

Rainfed -12.41 1.01 
Potatoes P1 Irrigated -1.95 1.65 to 15.26 

Rainfed -0.50 3.74 to 9.90 
Sorghum S1 Irrigated -31.05 1.95 

Rainfed -9.42 5.21 
Groundnut G1 Irrigated -10.41 0.30 to 26.99 

Rainfed -9.09 5.74 to 26.24 

Source:  Authors.  
Notes:  Column 1 values are calculated by comparing columns 1 and 2 in Table 4.1. Column 2 summarizes the yield effects 

from the technologies analyzed in Tables 4.3 and 4.4. Ranges in bold highlight the technologies that fully overcome the 
effects of climate change in the climate change (CC) scenario. 

Yield Changes with Market Effects 
The effect on exogenous yields after adoption of the different improved varieties can be significant in 
some countries, and the added productivity from improved varieties leads to price decreases compared 
with the baseline scenario. Because adoption of the new technologies is simulated only in target regions, 
however, the impacts on global prices are moderate (Table 4.6). The largest impact is observed when a 
DHTY groundnut variety is adopted, which is not surprising considering the significant increases in 
productivity of this variety (Table 4.3) and the large share of global production (more than 30 percent) of 
the region of adoption (Table 4.2). 

We expect that cassava yield changes (exemplified by the exogenous changes in Table 4.4) will 
also trigger price changes that will in turn influence farmers’ decisions to adopt new technologies or 
management practices. The pest infestation scenario (“Mealybug” scenario) shows a strong effect on 
global cassava prices, with price increases greater than 3 percent compared with the baseline (Table 4.7). 
The first treatment scenario (CBIOL1) significantly reduces the price increase, demonstrating the 
importance of Thailand to the cassava world market. Each of the final two treatment scenarios decreases 
the previous price increases by about 50 percent, such that in the last scenario (CBIOL3) the price is only 
0.4 percent higher than the base price, which indicates that the treatment sequence has brought the 
mealybug pest to a level of control very close to the preinfestation baseline scenario.  
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Table 4.6 Change in world commodity prices (percent difference from 2050 climate change baseline 
without the new technologies) 

Crop DT HT DTHT DHTY 
Maize -0.76 -0.64   
Wheat -0.13 -0.13 -0.14  
Rice -0.04    
Potatoes -0.11 -0.04 -0.22  
Sorghum -3.21    
Groundnut -1.18 -1.64  -4.99 

Source: Authors.  
Notes:   DHTY = drought and heat tolerant, high yield; DT = drought tolerant; DTHT = drought tolerant, heat tolerant; HT = heat 

tolerant. By definition these are world prices; therefore only these global results are available. Blank cells are those 
without any scenario input. Refer to Table 2.1 for details of the regions where the various combinations of crop and 
“technology” (drought tolerance, heat tolerance, and so on) are simulated.  

Table 4.7 Change in world cassava prices (percent difference from 2050 climate change baseline 
without the new technologies) 

Scenario Price  
Mealybug 3.12 
CBIOL1 2.17 
CBIOL2 0.93 
CBIOL3 0.41 

Source:  Authors. 
Notes:  The values in the table indicate the percent change compared with the baseline. The baseline represents an ideal case in 

which cassava has not been exposed to the mealybug pest. The scenarios are as follows: Mealybug = Untreated pest 
infestation. CBIOL1 = Mealybug wasps are applied only in Thailand. CBIOL2 = Mealybug wasps are applied in all 
countries, but less completely than in Thailand. CBIOL3 = Mealybug treatment applied completely in all targeted 
countries. 

The IMPACT model is a dynamic multimarket model in which supply and demand respond to 
world prices. The price changes shown in Tables 4.6 and 4.7 have endogenous effects on yields because 
they affect the choices (for example regarding inputs such as fertilizer) made by farmers, as well as 
consumers. Importantly, these price changes affect both farmers who adopt the new technologies and 
those who do not. Tables 4.8 and 4.9 show the changes in final IMPACT yields (or endogenous yields), 
including the market effects embodied by the price changes in Tables 4.6 and 4.7.  

The effects of prices serve to reduce the effects of the climate and technology (or exogenous) 
yield improvements. By reducing the adverse impacts of climate change, the new technologies increase 
production and thus reduce prices relative to what would otherwise have been realized. Lower prices in 
turn dampen incentives to farmers. Farmers who adopt the new technologies still benefit from doing so, 
but less than they would have done if prices had not declined. Farmers who do not adopt the new 
technologies typically suffer because prices fall, but without the mitigating improvement in crop yields. 
Results for HT rainfed wheat and irrigated cassava under CBIOL1 illustrate this point. In areas where the 
new technology or management practices were not implemented, farmers face lower prices (due to 
increased productivity elsewhere) without any offsetting exogenous improvements on yield (from new 
technology), ending with lower final endogenous yields. 
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Table 4.8 Change in crop yields with market effects (percent difference from 2050 climate change 
baseline without the new technologies) 

 DT HT DTHT DHTY 
Crop Irrigated Rainfed Irrigated Rainfed Irrigated Rainfed Irrigated Rainfed 
Maize 10.53 23.85 27.51 13.49     
Wheat 0.05 1.99 0.92 - 4.53 2.84   
Rice 0.03 0.23       
Potatoes 0.34 0.4 1.56 0.12 3.14 0.43   
Sorghum -0.03 6.59       
Groundnut 0.15 3.7 7.07 4.06   15.62 13.77 

Source: Authors.  
Notes:  DHTY = drought and heat tolerant, high yield; DT = drought tolerant; DTHT = drought tolerant, heat tolerant; HT = heat 

tolerant. Values are average across countries. Blank cells are those without any scenario input. Refer to Table 2.1 for 
details of the regions where the various combinations of crop and “technology” (drought tolerance, heat tolerance, and 
so on) are simulated.  

Table 4.9 Change in cassava yields with market effects (percent difference from 2050 climate 
change baseline without the new technologies) 

Scenario Irrigated Rainfed 
Mealybug -11.93 -10.91 
CBIOL1 -12.00 -6.07 
CBIOL2 -4.71 -2.84 
CBIOL3 -1.60 -1.47 

Source:  Authors.  
Notes:  The values in the table indicate the percent change compared with the baseline. The baseline represents an ideal case in 

which cassava has not been exposed to the mealybug pest. The scenarios are as follows: Mealybug = Untreated pest 
infestation. CBIOL1 = Mealybug wasps are applied only in Thailand. CBIOL2 = Mealybug wasps are applied in all 
countries, but less completely than in Thailand. CBIOL3 = Mealybug treatment applied completely in all targeted 
countries. 

The general story illustrated in the previous section continues to hold, with HT varieties generally 
outperforming DT varieties, and combined-trait varieties demonstrating greater impacts, not only on 
prices but also on endogenous yields. The scale of the dampening effects of prices is largely based on the 
size of the price decreases (Table 4.6). The largest difference between endogenous yield increases (13 to 
16 percent, Table 4.8) and exogenous yield increases (26 to 27 percent, Table 4.6) occurs for DHTY 
groundnut, where prices decline by nearly 5 percent due to technology adoption. DT sorghum, where the 
second largest price decline is observed (greater than 3 percent), similarly has a large difference between 
exogenous and endogenous yield gains. 

The biological control scenarios show the dampening effects in the opposite direction. 
Diminished production due to mealybug infestation leads to higher prices, incentivizing farmers to apply 
more inputs into their production, thereby mitigating somewhat the negative exogenous yields seen in 
Table 4.4. 

As was the case in Section 4.3, the regional results can hide significant variation at the country 
level. The observed variation in endogenous yields at the country level are primarily driven by the 
variation in the exogenous yield benefits observed in Section 4.3 and the country-level adoption pathways 
(Appendix C). For example, DT maize is adopted in 12 countries under rainfed conditions, whereas it is 
only adopted in 4 countries under irrigated conditions. Therefore, much of the change observed between 
Table 4.3 and Table 4.8 for irrigated DT maize is driven by Ethiopia, the largest irrigated maize producer 
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in the region. The endogenous yields in Table 4.8 illustrate the aggregate market responses to world 
prices in the targeted regions. 

Changes in Area, Production, and Trade 
Crop production in IMPACT is determined by the interaction of crop areas and their respective 
productivity. Farmers respond to price changes not only by changing the inputs they apply to their crops 
but also by selecting what crops they choose the cultivate. Where productivity grows, there is a reduced 
incentive to expand agricultural production to new areas; hence increased endogenous yields for, say, DT 
rice and HT wheat result in a reduction, albeit modest, of the area cultivated under either of these two 
crops in 2050 (compared with a base in which the new varieties are not adopted). On the other hand, an 
increase in prices provides farmers with an incentive to expand harvested area, as would happen in the 
cassava biological control scenarios. On balance, these modeled scenarios show that the overall incentive 
is to reduce harvested area given the impacts of climate change and alternative technologies. Table 4.10 
illustrates the changes in crop areas due to the adoption of new varieties. The largest declines in harvested 
area occur where the largest price declines are observed (DHTY groundnut and DT sorghum). 

Table 4.10 Change in harvested area (percent difference from 2050 climate change baseline without 
the new technologies in modeled regions) 

 DT HT DTHT DHTY 
Crop Irrigated Rainfed Irrigated Rainfed Irrigated Rainfed Irrigated Rainfed 

Maize -0.15 -0.20 -0.17 -0.30     
Wheat -0.02 -0.03 -0.04 -0.09 -0.18 -0.08   
Rice -0.01 -0.01       
Potatoes -0.02 -0.04 -0.01 -0.01 -0.05 -0.08   
Sorghum -0.35 -1.01       
Groundnut -0.22 -0.61 -0.30 -0.83   -0.96 -2.61 

Source:  Authors.  
Notes:  DHTY = drought and heat tolerant, high yield; DT = drought tolerant; DTHT = drought tolerant, heat tolerant; HT = heat 

tolerant. Values are average across countries. Blank cells are those without any scenario input. Refer to Table 2.1 for 
details of the regions where the various combinations of crop and “technology” (drought tolerance, heat tolerance, and 
so on) are simulated.  

With the relatively small changes in harvested area observed above, it is unsurprising that 
changes in crop production (shown in Table 4.11) mirror the scenario results for endogenous yields 
observed in Table 4.8, with slightly smaller changes in production reflecting the changes in cropped area. 

In the case of cassava, decreasing productivity and increasing prices give farmers an incentive to 
expand cultivated area. Table 4.12 illustrates this relationship clearly, with the greatest area expansion 
occurring in the full infestation scenario, where the greatest price increases and yield declines are 
observed. 

Increased production is not automatically consumed locally; countries can and do export. 
Understanding how changes in production affect a county’s relationship to global markets is valuable in 
determining their vulnerability to global price shocks. Ultimately adoption of new technologies should 
make adopting countries more competitive globally, allowing for greater involvement in world markets 
and potentially reducing reliance on imports. 
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Table 4.11 Change in production (percent difference from 2050 climate change baseline without the 
new technologies) 

 DT HT DTHT DHTY 
Crop Irrigated Rainfed Irrigated Rainfed Irrigated Rainfed Irrigated Rainfed 
Maize 10.33 23.6 27.3 13.14     

Wheat 0.04 1.97 0.87  4.35 2.76   

Rice 0.03 0.23       

Potatoes 0.32 0.36 1.55 0.11 3.1 0.36   

Sorghum -0.41 5.35       

Groundnut -0.14 3.07 6.66 3.19   14.24 10.79 

Source:  Authors.  
Notes:  DHTY = drought and heat tolerant, high yield; DT = drought tolerant; DTHT = drought tolerant, heat tolerant; HT = heat 

tolerant. Values are average across countries. Blank cells are those without any scenario input. Refer to Table 2.1 for 
details of the regions where the various combinations of crop and “technology” (drought tolerance, heat tolerance, and 
so on) are simulated.  

Table 4.12 Change in cassava area and production (percent difference from 2050 climate change 
baseline without the new technologies) 

Scenario Area Production 
 Irrigated Rainfed Irrigated Rainfed 

Mealybug 0.32 0.52 -11.77 -10.21 

CBIOL1 0.23 0.37 -11.94 -6.15 

CBIOL2 0.10 0.16 -4.67 -2.79 

CBIOL3 0.04 0.07 -1.57 -1.37 

Source:  Authors.  
Notes:  The values in the table indicate the percent change compared with the baseline. The baseline represents an ideal case in 

which cassava has not been exposed to the mealybug pest. The scenarios are as follows: Mealybug = Untreated pest 
infestation. CBIOL1 = Mealybug wasps are applied only in Thailand. CBIOL2 = Mealybug wasps are applied in all 
countries, but less completely than in Thailand. CBIOL3 = Mealybug treatment applied completely in all targeted 
countries. 

Figures 4.2 and 4.3 summarize changes in the ratio of net trade over national production in the 
targeted regions. This ratio is a useful way of analyzing changes in commodity trade for a couple of 
reasons. First, it allows us to identify when countries or regions change from being importers (negative 
net trade) to being exporters (positive net trade). DHTY groundnut is an example of a technology whose 
adoption causes a region to switch from being an importing region to being an exporting region. Second, 
this ratio allows us to observe changes in trade while controlling for changes in production. If demand 
increases at the same rate as production, we would expect to see no change in the ratio, and we could say 
that all additional production is being consumed in the region. If, on the other hand, the ratio increases, it 
means that the additional production displaces imports or is exported, which contributes to improved 
terms of trade.10 

In all cases, the adoption of new varieties has a positive effect on the ratio of trade over 
production. As should be expected, the technologies with the largest effects on production have the 
largest effects on trade. As mentioned previously, the DHTY groundnut scenario actually causes the 

                                                      
10 If the ratio of net trade to production were to decline, this would mean that demand in the region for the commodity is 

outpacing the increase in production. While no example of this occurs in the scenarios examined, such a hypothetical situation 
could occur if price decreases for a commodity lead to a large increase in regional demand. 
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region to go from being a small importing region (importing an additional 2 percent of its production to 
satisfy regional demand) to being a slight exporter (exporting an excess 4 percent of production). Regions 
highly dependent on imports of staple crops, like both maize regions (M1 and M2), reduce their 
vulnerability to global price shocks by reducing their imports as a share of production. The M2 region, for 
example, goes from importing almost twice its regional production to importing less than 1.5 times its 
production. Regions that are already exporting the targeted crops, such as DT wheat in W1, DTHT wheat 
in W2, and DT potatoes in P1, see an increase in their exports even as their production increases due to 
the adoption of new technologies. 

The trade ratio for the cassava scenarios demonstrates a story similar to that of the previous 
sections. The uncontrolled infestation has a drastic effect, nearly doubling the share of imports with 
respect to production, with each increase in adoption of the mealybug control more closely approximating 
preinfestation levels. 

Figure 4.2 Change in commodity trade ratios (net trade over national production, percent 
difference from 2050 climate change baseline without the new technologies) 

Maize Wheat  

  

 

     
Rice Potatoes Sorghum Groundnut  

    

 

Source:  Authors. 
Notes:  DHTY = drought and heat tolerant, high yield; DT = drought tolerant; DTHT = drought tolerant, heat tolerant; HT = heat 

tolerant. Refer to Table 2.1 for details of the regions where the various combinations of crop and “technology” (drought 
tolerance, heat tolerance, and so on) are simulated.  
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Figure 4.3 Change in the cassava trade ratio (net trade over national production, percent difference 
from 2050 climate change baseline without the new technologies) 

 

Source:  Authors. 
Notes:  The scenarios are as follows: Mealybug = Untreated pest infestation. CBIOL1 = Mealybug wasps are applied only in 

Thailand. CBIOL2 = Mealybug wasps are applied in all countries, but less completely than in Thailand. CBIOL3 = 
Mealybug treatment applied completely in all targeted countries. 
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5.  SUMMARY AND CONCLUSION 

Climate change is already reducing crop yields in some parts of the world through changes in average 
temperatures, shifting precipitation patterns, and extreme events such as heat waves, droughts, and floods 
(Knox et al. 2012; Porter et al. 2014). Without adaptation, these impacts are projected to worsen with 
time. In this context, the long-term goal of the CGIAR Global Futures and Strategic Foresight (GFSF) 
program is to support decisionmaking in the agricultural sector by evaluating promising agricultural 
technologies and practices that support agricultural adaptation through improvements in productivity. At 
its core, the program evaluates technologies and practices through a system of linked economic, water, 
and crop simulation models. 

In this study, the IMPACT system of models was used to assess the productivity-enhancing 
potential of new technologies selected by CGIAR centers for their high adaptive value. GFSF team 
members at CIMMYT, CIP, ICRISAT, and IRRI identified drought- and heat-tolerance traits in maize, 
wheat, potatoes, groundnut, sorghum, and rice as priorities. CIAT identified biotic stresses as the priority 
for cassava, focusing on mealybug control in Southeast Asia.  

Summary of Results 
In all cases analyzed in this report, the technologies led to improved production under both the NoCC and 
GFDL climate scenarios. In general the HT traits performed better than the DT traits, although in regions 
under greater water scarcity the DT traits approached the yield gains from the HT varieties. In the 
analyzed scenarios, the combined-trait varieties clearly performed better than the single-trait varieties. 
Given that climate change scenarios generally increase both water and heat stress, these results suggest 
that more work should be focused on integrating these traits to ensure more robust adaptation. 

Productivity gains from adopting the analyzed technologies were relatively small when compared 
with the overall effects of socioeconomic change and general productivity improvements (IPRs) over the 
entire projection period (column 1, Table 4.1). Nevertheless, they were comparable in scale to the effects 
of climate observed under the GFDL RCP 8.5 climate scenario (Table 4.5). Additionally, the productivity 
gains observed in all of the technologies improved the regions’ terms of trade (Figures 4.2 and 4.3). For 
importing regions, the share of imports compared with production declined, making the domestic supply 
of these commodities less reliant on global supply. For exporting regions, increased productivity led 
primarily to greater exports, making the agriculture sector relatively more competitive in global markets. 
These changes suggest that all of the adopting regions would be less vulnerable to global price shocks 
under these scenarios. 

IMPACT is a global multimarket model, in which changes in domestic yields and areas respond 
to changes in aggregate global production and demand through equilibrium world prices. Scenarios with 
limited changes in world prices will see limited changes in areas, yields, trade, and food security. The 
global consequences of the different technology scenarios vary by crop and technology, in large part due 
to the total share of global production and the rate of adoption in the region. For example, the potato 
technologies analyzed show beneficial yield effects but have limited global impacts (world prices 
decrease by .04 to .22 percent) due to low adoption rates at the national level (Appendix D) despite the P1 
region’s producing a significant share of global production (Table 4.2). This is in contrast to the 
groundnut technologies, which caused world groundnut prices to decline by 1 to 5 percent due to the G1 
region’s relatively higher adoption rates coupled with its significant share of global production. It should 
be noted that scenarios with larger world price changes like the groundnut scenario will have more 
diffused benefits, whereas the benefits of a technology with limited price effects will likely be captured 
primarily by the adopting producers. 
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Reflections on Methodology 
Due to the uncertain nature of projecting economic, social, political, and physical changes over many 
decades, it is necessary to test potential policies and alternative technologies across a wide set of climatic 
and economic conditions. The current study has chosen a relatively limited set of conditions to verify the 
response of the potential technologies to a drier and hotter global climate (SSP2 under two climates: 
NoCC and GFDL RCP 8.5). In the future, this methodology of linked models should be used to test the 
robustness of potential technologies by performing long-run analyses of scenarios that combine a range of 
different climatic and economic characteristics (for example, how do DT varieties perform under wetter 
conditions?). 

As mentioned earlier, the current representation of climate change fails to capture interannual 
variability, which does not allow testing of the technologies under the extreme climate events that they 
are designed to mitigate. This lack of variability limits the potential of this methodology to assess the 
effects of any technology that is primarily risk reducing as opposed to yield enhancing. Future research 
should look at ways of adapting the current methodology to include climate variability, not only by 
increasing the number of climate scenarios (represented by RCPs and GCMs), but also by developing 
methods to represent the effects of weather variability at more refined time scales; the timing of extreme 
events is important because weather sensitivity varies across different stages of plant development. 

The current methodology relies greatly on crop models to capture changes in crop productivity. 
These tools are powerful, and they allow the development of highly localized and specific scenarios that 
better capture the local effects of climate and soils. However, these models have weaknesses, which may 
limit the scenarios and technologies that can be easily tested. The highly detailed nature of these models 
requires detailed inputs as well as assumptions describing cultivar characteristics, management practices, 
and soil properties. Crop models do not incorporate economic drivers and therefore require assumptions 
on how the initial conditions could change over time. In many cases, these assumptions (nitrogen 
application, for example) may have larger effects than the technologies we are analyzing. Additionally, 
crop models currently do not capture changes in quality (appearance, taste, and so on) or nutritional 
composition. To test quality-enhancing technologies, we would need greater nutritional composition 
information out of the crop models as well as a more detailed food demand system in the multimarket 
model. 

The global benefits of the potential technologies are sensitive to assumptions on adoption rates. 
Therefore it will also be necessary to test the technologies under a broader range of adoption pathways. 
This type of sensitivity testing has already been done to a limited extent in the cassava scenarios, but it 
would need to be extended to include greater variation in maximum adoptions, speed of adoption, and 
starting and ending dates of adoption for all of the technologies studied.11  

There is a natural inclination to try to identify the technologies that provide the largest benefit. 
This methodology can be a potential tool in doing this type of analysis and research priority setting. 
However, scenario design will play a critical role in how satisfactorily these technologies can be 
compared and assessed in terms of their benefit. How we compare the benefits of a technology adopted in 
one region and crop under different adoption assumptions with its adoption in another region and crop is 
not straightforward. To facilitate this type of analysis it is necessary to control scenario design to limit the 
number of differences across the dimensions we are interested in. This is important because we need not 
only to quantify the differences in the scenario results but also to understand the root drivers of these 
differences. Trying to prioritize research across the range of regions and crops that this study has 
examined, for example, would be very difficult. The scenarios have greatly varying assumptions on 
adoption rates, with the regions selected often varying significantly in terms of expected climate effects 
(wheat in Argentina versus India for example) as well as economic conditions. Additionally, detailed 
analysis of the potential costs of developing, diffusing, and implementing the agricultural technologies 
would be needed. The current study has focused only on the benefit side of potential technologies, and 
                                                      

11 These adoption pathways should also be tied back to the scenarios’ socioeconomic assumptions to ensure they are logical 
and consistent with the overall scenario. 
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comparable work on technology costs and how they relate to adoption would be necessary for any 
prioritization of investments. 

Next Steps 
Experts agree that sustainable food security is a broad goal; to achieve it will require a combination of 
increases in agricultural productivity, reduction of waste and losses, more sustainable consumption 
patterns, and better food distribution worldwide (Garnett et al. 2013; Smith 2013). Productivity scenarios 
like the ones analyzed in this study can be useful policy tools to identify technologies that would impact 
global food production. The methodology developed for the Global Futures program provides a flexible 
framework to test and compare different production technologies in crop models as well as economic 
models. Additional traits can be identified and tested, such as C4 rice or crop varieties that have longer or 
shorter maturation periods, in addition to those examined here. 

As our understanding of the possible adverse and positive impacts of climate change improves 
over time, scientists have started to better understand and address resulting changes in biotic stresses on 
crops. However, the magnitude of what we still do not know is troubling. We expect that a changing 
climate will affect the geographical range and distribution of pests, diseases, and weeds (Gornall et al. 
2010; Paulson et al 2009; Deutsch et al 2008). New pests can emerge as a result of changes in complex 
ecological conditions: climate may affect crops’ natural defenses, the interaction between these defenses 
and pests’ life cycles, and the interaction between those and specific agricultural practices and 
technologies. Biotic stresses will need to be taken into consideration in the design of alternative climatic 
futures, to allow the testing of policy interventions that would make sense in response to changes in pests’ 
prevalence or composition. These types of questions may be better approached, at least initially, in a more 
stylized way without the direct use of crop models, in much the same manner as was done for the cassava 
mealybug scenarios. 

Improving productivity is only one area that needs to be examined. There may be large benefits 
from technologies and policies that do not focus exclusively on production, but instead consider access to 
and consumption of quality food. Scenarios that examine shifts in diet as a result of changes in 
sociodemographics, policy, and consumer preferences are also an important component of achieving food 
security globally. Scenarios focusing on questions revolving around food demand and utilization should 
extend beyond “overconsumption” in rich countries and should address complementary investments in 
infrastructure, education, and improved trade. 

Continued improvement of the modeling system for long-term scenario analysis is a key 
component of the Global Futures and Strategic Foresight program. The current study has done much to 
advance the integration of crop, water, and economic models. The continued and strengthened 
involvement of experts and colleagues across the CGIAR network (and beyond) will be needed to ensure 
that the selected scenarios capture the most pressing concerns and questions, and the most promising 
solutions. 
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APPENDIX A:  SUPPLEMENTARY METHODOLOGY 

The DSSAT Suite of Crop Models 

Crop Models 
As a decision support tool, crop systems models have been showing potential at various levels of 
decision-making, from household (for example, irrigation scheduling in farmers’ fields) to global (for 
example, identifying the potential breadbasket areas). Crop models mathematically describe the growth of 
a crop and its interaction with soils, climate, and management practices. Most modern crop models can 
quantify, on a daily basis, various biological processes of a crop (for example, the amount of solar energy 
transformed into biomass; water and nutrient requirements, supply, and stresses; and growth stages) as 
well as physical processes around the crop (for example, soil water runoff, soil carbon sequestration, and 
nitrogen leaching). 

Since the early 1970s, various crop models have been developed by agricultural scientists based 
on improved knowledge of plant photosynthesis and respiration processes. Models range from generic 
and simple to specific and complex. Some models use response functions (for example, yield as a 
function of rainfall and nutrients) at their core, while others use sets of differential equations to describe 
the complexity of different processes and their interactions. There is no final and universal crop model—
rather, crop models are selected based on the type of research question posed. 

DSSAT Crop Systems Model 
The DSSAT, or Decision Support System for Agrotechnology Transfer, is one of the most popular crop 
modeling software packages in the world. DSSAT is actually a suite of single crop models with access to 
the same crop, soil, and weather databases. The models integrate the effects of crop systems components 
and management options, to simulate the states of all the components of the cropping system and their 
interaction. DSSAT crop models provide a framework for users to understand how the overall cropping 
system and its components function throughout cropping season(s), on a day-to-day basis. Users are 
expected to provide at least a minimum set of data that are essential to run the crop model for each 
geographical location. The minimum dataset includes the following: 

1. Site daily weather data for the duration of the growing season 
2. Site soil data 
3. Management and observed data from an experiment 

Given the availability of the input dataset, DSSAT users can simulate single-season or multiseasonal 
outcomes of the crop management decisions for different crops at any location in the world. 

DSSAT is one of the principal products developed by the International Benchmark Sites Network 
for Agrotechnology Transfer (IBSNAT) project supported by the US Agency for International 
Development from 1983 to 1993. It has subsequently continued to be developed through collaboration 
among scientists from multiple universities and international agricultural research institutes, and scientists 
associated with the International Consortium for Agricultural Systems Applications (ICASA).  

Currently, DSSAT is a commercial open-source application, which provides source code to 
registered users. Adopting a modular modeling approach, many parts of crop models can be plugged in or 
removed by users as necessary. The main engine of DSSAT is written in the FORTRAN 90 programming 
language, originally compiled in a PC environment. With minimal changes in the source code, DSSAT 
can be also compiled and executed in any other operating system with a FORTRAN compiler.  
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The IMPACT Global Agriculture Simulation Model 

Basic Multimarket Methodology 
The multimarket trade model is a system of equations offering a methodology for analyzing baseline and 
alternative scenarios for global food demand, supply, trade, income, and population. The multimarket 
submodule encompasses 159 geopolitical regions and 154 hydrological basins in the world. The 
intersection of these two geographical layers creates 320 food production units (FPUs). IMPACT models 
62 main agricultural commodities produced in the world. Within each region, supply, demand, and prices 
for agricultural commodities are determined. All regions are linked through trade. Supply and demand 
functions incorporate elasticities to approximate the underlying production and demand. World 
agricultural commodity prices are determined annually at levels that clear international markets. 

Crop Production 
Domestic crop production at the FPU level is determined by area and yield response functions separately 
for irrigated and rainfed cultivation. Harvested area is specified as a response to the crop’s own price, the 
prices of other competing crops, the projected rate of exogenous (nonprice) growth trends in harvested 
area, and the climate stress. The projected exogenous trend in harvested area captures changes in area 
resulting from factors other than direct crop price effects, such as expansion through population pressure 
and contraction from soil degradation or conversion of land to nonagricultural uses. Assumptions for 
exogenous trends are determined by a combination of historical changes in land use and expert judgment 
on potential future regional dynamics. 

Commodity yield is a function of the commodity prices, the prices of inputs, climate stress, and a 
projected nonprice exogenous trend factor. The trend factors, also called intrinsic productivity growth 
rates (IPRs), reflect productivity growth driven by technology improvements, including crop management 
research, conventional plant breeding, wide-crossing and hybridization breeding, and biotechnology and 
transgenic breeding. Other sources of growth considered include private-sector agricultural research and 
development, agricultural extension and education, markets, infrastructure, and irrigation. Annual 
production of a commodity in a country is then estimated as the product of its area and yield (Rosegrant 
and IMPACT Development Team 2012). The IPRs are specified as exogenous in the IMPACT model. 
We assume that these underlying trends vary by crop and region, and that they will decline somewhat 
over the next 50 years as the pace of technological improvements in developed countries slows, and as 
developing countries “catch up” to yields in developed countries. 

Supply elasticities are broken out by area and yield elasticities. Crop area elasticities simulate the 
supply response to changes in own-commodity and competing-commodity prices. Own-price area 
elasticities of supply for most products in developing countries are approximately two-thirds of those in 
the developed countries, reflecting the difficulties that producers in developing countries face in access to 
markets, information, and technology. Crop yield elasticities simulate the supply response of cropping 
intensity with respect to changes in crop prices, the cost of labor, and the cost of inputs. The absolute 
values of yield elasticities with respect to own price, capital, and labor add up to the crop price elasticity. 

Demand 
Domestic demand for a commodity is the sum of its demand for food, feed, biofuels, crush, and other 
uses. Food demand is a function of the price of the commodity and the prices of other competing 
commodities, per capita income, and total population. Per capita income and population increase annually 
according to region-specific population and income growth rates. Population statistics and growth rates 
are drawn from IIASA projections. Regional income growth is based on the OECD projections. Feed 
demand is a derived demand determined by the changes in livestock production, feed ratios, and own- and 
cross-price effects of feed. The equation also incorporates a technology parameter that indicates 
improvements in feeding efficiencies. Demand for feedstock for biofuels production is derived from the 
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implied demand among various alternatives for the development of ethanol and biodiesel. The crush 
demand for oilseeds for processing into oils is derived from the prices of the oil and meal by-product, the 
oilseed commodity, and the oil- and meal-processing ratios. The demand for other uses is estimated as a 
proportion of food and feed demand. 

The IMPACT demand elasticities are originally based on USDA elasticities and adjusted to 
represent a synthesis of average, aggregate elasticities for each region, given the income level and 
distribution of urban and rural population (USDA 1998). Over time the elasticities are adjusted to 
accommodate the gradual shift in demand from staples to high-value commodities like meat, especially in 
developing countries, based on expert opinion. This assumption is based on expected economic growth, 
increased urbanization, and continued commercialization of the agricultural sector. 

Prices 
Prices are endogenous in the system of equations for food, and are calibrated to year 2005 commodity 
prices (OECD-AMAD 2010). Domestic prices are a function of world prices, adjusted by the effect of 
price policies and expressed in terms of the producer subsidy equivalent (PSE), the consumer subsidy 
equivalent (CSE), and the marketing margin (MI). PSEs and CSEs measure the implicit level of taxation 
or subsidy borne by producers or consumers relative to world prices and account for the wedge between 
domestic and world prices. PSEs and CSEs are based on OECD estimates and are adjusted by expert 
judgment to reflect regional trade dynamics (OECD 2000). MI reflects other factors such as transport and 
marketing costs of getting goods to market and is based on expert opinion on the quality and availability 
of transportation, communication, and market infrastructure. In the model, PSEs, CSEs, and MIs are 
expressed as percentages of the world price. To calculate producer prices, the world price is reduced by 
the MI value and increased by the PSE value. Consumer prices are obtained by adding the MI value to the 
world price and reducing it by the CSE. The MI of the intermediate prices is smaller because wholesale 
instead of retail prices are used, but intermediate prices (reflecting feed prices) are otherwise calculated in 
the same way as consumer prices. 

International Linkage and Trade 
Regional production and demand are linked to world markets through trade. Commodity trade by region 
is a function of domestic production, domestic demand, and stock change. Regions with positive trade are 
net exporters, while those with negative values are net importers. This specification does not permit a 
separate identification of both importing and exporting regions of a particular commodity. 

Algorithm for Solving the Equilibrium Condition 
The systems of equations for IMPACT are written in the General Algebraic Modeling System (GAMS) 
programming language (GAMS Development Corporation 2012). The solution of these equations is 
achieved by the PathNLP solver. This procedure minimizes the sum of net trade at the international level 
and seeks a world market price for a commodity that satisfies the market-clearing condition. 

The world price (PW) of a commodity is the equilibrating mechanism such that when an 
exogenous shock is introduced in the model, PW will adjust and each adjustment is passed back to the 
effective producer (PS) and consumer (PD) prices via the price transmission equations. 

Changes in domestic prices subsequently affect commodity supply and demand, necessitating 
their iterative readjustments until world supply and demand balance and world net trade again equals 
zero. 
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IMPACT Water Simulation Models 

IMPACT Global Hydrology Model 
As described in the schematic of Figure A.1, the IGHM hydrological model is a semi-distributed 
parsimonious model. It simulates monthly soil moisture balance, evapotranspiration, and runoff 
generation on each 0.5 degree latitude by 0.5 degree longitude grid cell spanning the global land surface 
except the Antarctic. Gridded output of hydrological fluxes—namely effective rainfall, 
evapotranspiration, and runoff—are spatially aggregated to FPUs within the river basin and weighted by 
grid cell area. 

Figure A.1 IMPACT Global Hydrology Model 

 
Source:  Authors. 

The most important climatic drivers for water availability are precipitation and evaporative 
demand determined by net radiation at ground level, atmospheric humidity, wind speed, and temperature. 
In IGHM, the Priestley-Taylor equation (Priestley and Taylor 1972) is used to calculate potential 
evapotranspiration (PET). Soil moisture balance is simulated for each grid cell using a single-layer water 
bucket. To represent subgrid variability of soil water-holding capacity, we assume it spatially varies 
within each grid cell, following a parabolic distribution function. 

Actual evapotranspiration is determined jointly by the PET and the relative soil moisture state in 
a grid cell. The generated runoff is divided into a surface runoff component and a deep percolation 
component using a partitioning factor. The base flow is linearly related to storage of the groundwater 
reservoir. The total runoff to the streams in a month is the sum of surface runoff and base flow. 

IMPACT Water Basin Simulation Model 

Water Demand 
The water demand module calculates water demand for crops, industry, households, and livestock at the 
FPU level. Irrigation water demand is assessed as the portion of crop water requirement not satisfied by 
precipitation or soil moisture based on hydrologic and agronomic characteristics. Crop demand is 
calculated for each crop using evapotranspiration and effective rainfall from IGHM. It relies on the FAO 
crop coefficient approach (Allen et al. 1998) to calculate actual water demand for each crop for every 
month. The IMPACT model solves for the allocation of land to different crops, depending on output and 
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input prices and agricultural technology. Total irrigation demand in the FPU is calculated given this 
cropping pattern and after taking into account the basin efficiency of the irrigation system. 

Industrial water demand is modeled as a nonlinear function of GDP per capita and technology 
change. Future domestic water demands are based on projections of population and income growth. In 
each region or basin, income elasticities of demand for domestic water use are synthesized based on the 
literature and available estimates (de Fraiture 2007). These elasticities of demand measure the propensity 
to consume water with respect to increases in per capita income. The elasticities also capture both direct 
income effects and conservation of domestic water use through technological and management change. 
Livestock water demand is proportional to the number of animals raised as calculated by the multimarket 
model. 

Water Supply 
The IMPACT Water Basin Simulation Model (IWSM) is a water basin management model. For FPUs 
where there is water storage capacity (for example, dams), the model specifies a single reservoir that 
summarizes all water storage capacity and then manages that reservoir to maximize the ratio of water 
available to total water demand. IWSM uses the runoff calculated by IGHM, climatic data, and the water 
demands presented above to allocate available water to different uses. The schematic in Figure A.2 
provides an overview of the model. In each FPU, IWSM solves for a balance between the change in the 
amount of water stored in the reservoirs, the entering water flows (runoff from precipitation, water from 
nontraditional sources like desalination, and inflows from FPUs situated upstream), the exiting water 
flows (groundwater recharge from the stream, evaporation from the reservoirs, outflows to the FPU 
downstream or the ocean), and the water withdrawn for human use (surface water depletion). 

Figure A.2 The IMPACT Water Basin Simulation Model 

 
Source:  Authors. 
Note:  FPU = food production unit. 
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Surface water depletion, added to the pumped groundwater (which is limited by the monthly 
capacity of tube wells and other pumps) is used to meet the various water demands. The model solves by 
maximizing the ratio of water supplied to water demanded over a year in all FPUs. Solving for water 
demand and supply in all FPUs simultaneously, IWSM assumes that linked water basins are operated 
cooperatively, optimally allocating water between upstream and downstream demanders (qualified by 
imposing constraints on water delivery to downstream demanders). The model is parameterized to use 
available storage to smooth the distribution of water over months in order to avoid dramatic swings in 
monthly water delivery, if possible. 

Following standard practice, IWSM incorporates the basic rule that nonagricultural water 
demands have priority over agricultural water demands. Any shortage in water supply is absorbed by 
agriculture first. If the shortage is larger than irrigation water demand, then livestock, domestic, and 
industrial supplies are reduced proportionally. 

IMPACT Crop Water Allocation and Stress Model 
The Water Allocation and Stress module (ICWASM) then allocates water among crops in an area, given 
the economic value of the crop. We use the FAO Ky approach (Doorenbos, Kassam, and Bentvelsen 
1979) to measure water stress using a monthly approach to include seasonality of water stress. Because 
optimizing total value of production given fixed prices leads to a tendency for specializing in high-value 
crops, we include a measure of risk aversion for farmers in the objective function, which preserves a 
diversified production structure even in case of a drought. The stress model produces a measure of yield 
stress for every crop—both irrigated and rainfed—in each of the FPUs where that crop is grown. The 
yield stress for the base year is recorded and the model defines the yield shock for subsequent years as the 
ratio of that year’s yield stress to the base-year yield stress. This method allows for a consistent modeling 
framework while making sure that the base-year yields from the multimarket model dataset are preserved. 

Linking the IMPACT Water and Multimarket Models 
The IMPACT model is solved dynamically (refer to Figure 2.1 in the main text of the report). First, the 
IMPACT multimarket model is solved for the current year assuming exogenous trends on various 
parameters, yielding projected production, prices, and allocation of land to crops. For this first run, 
expected water stress is set to the average of the previous four years, which sets harvest expectations for 
the allocation of land to different crops. 

The water demand module then calculates water demand for crops, industry, households, and 
livestock. Agricultural and nonagricultural water demands are then calculated as outlined above. IWSM 
(Figure A.2) uses these water demands, along with river flows provided by IGHM (Figure A.1), to 
provide the monthly repartition of water among FPUs given the objective function described above.  

ICWASM then allocates water among crops in an area, given the economic value of the crop. The 
stress model produces a measure of water stress on yield for every crop—both irrigated and rainfed—in 
each of the FPUs, which is then multiplied by the temperature stress obtained from DSSAT. 

Finally, the new yield shocks are calculated and applied to the IMPACT multimarket model, 
which is solved a second time for the final equilibrium, but now assuming that the allocation of land to 
crops is fixed, since farmers cannot change their decisions after planting. This solution yields all 
economic variables, including quantities and prices of outputs and inputs, and all trade flows. The model 
then moves to the next year, updates various parameters on trend, and starts the process again. 

Crop Modeling: Climate, Planting Period, and Soil Type Input Data 
Climate data must ultimately drive the crop models. Monthly means were obtained at 0.5-arc-degree 
spatial resolution for four climate models through ISI-MIP for two time periods representing an interval 
around 2005 and 2055. These were used to apply a delta-method approach to the baseline/historical data 
from the FutureClim dataset (Jones, Thornton, and Heinke 2010), resulting in an internally consistent set 
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of future conditions that are directly comparable to a common baseline. Daily weather realizations for 40 
years were generated based on those monthly means. 

Because crops must be planted at a particular time, rules were developed to identify reasonably 
appropriate planting months under climate change conditions. Within the designated planting month, the 
crop model is run for the 40 years of simulated weather with the planting date being on the first of the 
month, and another 40 times using the same weather but planting in the middle of the month. The 
resulting 80 yields are pooled to determine the overall average yields. This was done to reflect the 
observation that even in very similar locations, not all planting takes place simultaneously. Since no rule 
is going to be perfect, this process is repeated for the month prior to and the month after the target 
planting month. The final yield is taken as the highest of those three individual monthly average yields. 

The remaining parameters can be thought of as two types: those likely to be different in each 
location and those defined once and applied in the same way in every location. We have already 
encountered the first example of site-specific data in the climate, weather, and planting month bundle. 
The soil type will also be different from location to location. We follow a generic soil profile approach 
known as HC27 (HarvestChoice 2010), whereby 27 soil profiles are generated ({sandy, loamy, clay} × 
{shallow, medium, deep} × {low, medium, high organic carbon}). Applying some simple rules to the 
Harmonized World Soil Data allowed us to choose which profile is most appropriate for each location. 
Another important spatially distributed input is the fertilizer application rate. In practice, this is defined at 
the country level with different values for rainfed and irrigated situations. 

Linking DSSAT Crop Model Results to the IMPACT Model 
Process-based crop simulation models can be used to explore the effect of various technologies/practices 
and climates on the mechanics of crop production. For instance, the models can simulate how yields may 
respond to varietal choice, soil management practices (for example residue retention, tillage depth), and 
length of growth period. The next level of assessment performed in this study is to consider these 
biophysical processes in conjunction with economic factors. Process-based crop models can simulate 
accurately the growth of particular crops, but provide no insight into the availability of a variety or 
technology and how farmers respond to medium- to long-term incentives. They are mechanical 
biophysical models containing no economic factors or inputs. The challenge is then to take both 
management and climate change effects simulated in crop models and incorporate them into economic 
models alongside price effects, general technological progress, and assumptions on adaptive behavior on 
the part of producers. The approach we use at IFPRI is to feed into IMPACT the responses of selected 
crops to climate, soil, and nutrients simulated by DSSAT. The yield simulations in DSSAT are performed 
on a geographic grid, whereas IMPACT operates on a regional basis (FPUs). Therefore, the first 
challenge is to transform the detailed gridded crop modeling results into a form compatible with that of 
the economic model. This transformation is accomplished using area-weighted average yields. The 
relative importance of each pixel is judged by the physical area allocated to the crop of interest by the 
Spatial Production Allocation Model (SPAM) (You, Wood, and Wood-Sichra 2006; You et al. 2014). The 
SPAM areas are summed in the FPU to determine a total crop area. Next, the SPAM areas are multiplied 
(pixel by pixel) by the DSSAT simulated yields, providing pixel-level production information. These are 
summed in the FPU to obtain the total simulated production. Based on these, the area-weighted average 
yield is just total production divided by total area. These yields are computed for all combinations of 
cases. These yields are then transferred to IMPACT and used to construct the “shifters” that are used in 
the simulations to reflect the climate change shock and the effects of technology adoption. All crop model 
results are applied in IMPACT using a delta method, meaning the changes in yields (deltas) observed in 
the crop models’ simulated yields are applied to the IMPACT yields. 

We use this approach because it allows us to capture the direction and magnitude of change due 
to technologies (or climate change) seen in the crop models while maintaining the observed agricultural 
productivity reported in the FAOSTAT database. Modeling technology adoption adds complexity to the 
traditional delta method used for climate change in that it adds choice. Farmers can’t choose whether or 
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not climate change will happen; however, they can choose whether they will implement a new 
technology. This choice is influenced by biophysical (whether the new technology is better in a given 
farmer’s field), economic (access to technology, cost of adoption, and so on), and individual (level of risk 
aversion) factors. To try to capture some of this complexity in the technology scenarios, we divide each 
FPU into two parts based on the biophysical potential of the new technology: 

1. Nonadopters: The share of the FPU where no new technology adoption occurs (new 
technology does not improve crop yields), and the baseline technology continues to be 
used12 

2. Potential adopters: The share of the FPU where adopting the new technology could be 
beneficial due to increased crop yields13 

From DSSAT, we get the crop yields for nonadopters (baseline technology only) and for potential 
adopters (under the baseline and under the new technology). Even when the technology is beneficial 
compared with the baseline, not all potential adopters will adopt a new technology, because of economic 
and individual factors. Using the technology adoption curves in IMPACT, which represent the economic 
and individual preferences, we can calculate what share of the potential area of adoption is actually 
implementing the new technology at a given time t. The nonadopters have no additional effect from the 
technology because they remain with the baseline technology, whereas the potential adopters who adopt 
gain the benefit of the new technology, which is calculated as 𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑡𝑡

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡
, where t is the 

time period. This delta is applied as a yield multiplier in IMPACT in the following way: 

𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 = 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 

where YieldInt represents the intrinsic productivity growth rates (IPRs), CCShock is the climate shocks 
from the DSSAT model, WaterModelShock comes from the Water Model portion of IMPACT, and 
PriceEffect is the endogenous price effect simulated in IMPACT on the basis of the exogenous yields (the 
exogenous yields can be represented with the same equation, without the price effect component). 

Climate change effects on crop production enter into IMPACT by altering both crop area and 
yield. Yields are altered through the intrinsic yield growth as well as the water availability coefficient for 
irrigated crops. The effects of climate change on productivity are obtained by calculating location-specific 
yields for each of the crops modeled with DSSAT for the climate scenarios in 2000 and 2050 (as 
described above). They are then converted to growth rates at the FPU level, which are used to shift the 
yield portion of the supply relationships for that FPU. 

Positive-Only Impacts for Adoption Scenarios 
Implementation of the chosen improved varieties in DSSAT results in pixels with both lower and higher 
yields. We assume that farmers implement the alternative varieties over many years only if yields are 
higher than under the “older” varieties. Thus, we include adoption of improved varieties only if the yield 
change from the reference case is positive. Otherwise, the baseline yields are used. This is why, as 
explained above, an FPU may have a share of adopters and one of nonadopters. 

How Yields Can Be Changed in the IMPACT Model 
The IMPACT model includes four ways for changes in yields to be achieved. At its base, the model 
assumes underlying improvements in yields over time that continue trends observed over the past 50–60 
years (refer to Figure 4.1 in the main text). These long-run trends, or IPRs, are intended to reflect the 
expected increases in inputs as well as improvements in management practices, particularly in developing 

                                                      
12 See also the section “Positive-Only Impacts for Adoption Scenarios,” below. 
13 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹𝐹𝐹 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
. 
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countries, where there is considerable scope to narrow the gap in yields compared with developed 
countries. These IPRs are exogenous to the model because they are part of the input data that go into the 
model, not a solution of the model itself. The IPRs are specified as exogenous in the IMPACT model. We 
assume that these underlying trends vary by crop and region, and that they will decline somewhat over the 
next 50 years as the pace of technological improvements in developed countries slows, and as developing 
countries “catch up” to yields in developed countries. 

Second, the IMPACT model also includes a short-run (annual), endogenous response of yields to 
changes in output prices. These yield response functions specify the change in yield as a constant 
elasticity function of the change in output price, with elasticity parameters that can vary by crop and 
region. The underlying assumption is that farmers will respond to changes in prices by varying the use of 
inputs, including inputs such as fertilizer, chemicals, and labor that will, in turn, change yields.  

Third, the IMPACT model includes the possibility of introducing new technologies such as 
varieties that are tolerant of drought, heat, or both. These are included as new crop- and region-specific 
“activities” in the model. We discussed the nature of these alternative crop varieties in Section 3 above; 
their impacts are described in more detail below. We assume (as part of the technology adoption 
scenarios) that the share of production that originates from using the new activities increases over time, 
following a logistic adoption function. Given these adoption functions, the effect of the new activities on 
average yields is exogenous in the multimarket model, but yields will be affected by climate shocks that 
vary over time (that is, different crop varieties will vary in their yield reaction to climate shocks).  

Fourth, climate change is assumed to affect yields through two mechanisms. The first mechanism 
is through the effects of changes in temperature and “weather” due to climate change on the yields of 
rainfed and irrigated crops, as calculated from the solution of a crop simulation model (DSSAT) for 
different climate change scenarios. These crop simulations vary by crop type and include different 
treatments of new alternative crops. The DSSAT model is run with detailed time, geographic, and crop 
disaggregation for different climate change scenarios that are “downscaled” to include weather variation 
over small geographic areas. This analysis generates changes in average yields due to climate change, 
which are then averaged to generate yield shocks by crop and region (FPU) in the IMPACT model. These 
long-run climate scenario yield shocks are assumed to follow simple trends over time.  

The second mechanism by which climate change affects yields is through variation in water 
availability for agriculture from year to year under different climate scenarios. This mechanism is 
modeled through the use of the IMPACT water models, which include a global hydrology model that 
determines runoff to the river basins (FPUs) included in the IMPACT model, and water basin 
management models for each FPU that allocate available water to competing uses, including irrigation. 
The water available for irrigation is then allocated to crops and, when water supply is less than demanded 
by crop, a “water stress” model computes the impact of the water shortage on crop yields (accounting for 
differences in impacts on alternative versus existing varieties). These yield shocks are then passed to the 
IMPACT model, affecting year-to-year crop yields. 
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APPENDIX B:  IMPACT OF INTRINSIC PRODUCTIVITY GROWTH RATES ON 
BASELINE YIELDS 

Table B.1 Impact of intrinsic productivity growth rates on baseline yields (percent change between 
2050 and 2005) 

  NoCC CC 
Crop Country Irrigated Rainfed Irrigated Rainfed 
Maize Angola  63.49 80.35 68.64 86.03 

Bangladesh 53.94 53.91 -3.31 -3.34 
Benin 189.88 92.18 198.06 116.12 
Ethiopia 25.28 15.8 34.2 23.6 
Ghana 100.4 74.4 109.81 111.97 
India 64.36 107.55 34.84 65.93 
Kenya -31.26 -20.69 -30 -19.23 
Malawi -33.41 -14.25 -39.87 -22.57 
Mali 104.08 69.37 109.17 73.22 
Mozambique 110.35 59.18 -7.31 32.73 
Nepal 53.32 22.87 17.56 -5.16 
Pakistan 68.08  33.9  
Tanzania -40.29 -31.32 -63.11 -58.04 
Uganda 78.16 96.18 89.78 108.97 
Zambia 38.98 55.5 45.09 62.33 
Zimbabwe 466.44 258.62 386.92 208.59 

Wheat Argentina 75.49 77.49 101.93 80.26 
India 9.14 0.75 -6.04 -14.7 
Iran 176.57 174.87 203.73 196.11 
Pakistan 49.29  27.93  
South Africa 104.27 124.31 79.87 93.09 
Turkey 29.45 54.91 40.1 65.09 

Rice Bangladesh 40.08 43.36 34.03 36.92 
Cambodia 53.45 16.23 43.29 8.58 
India 34.84 9.57 10.23 -11.56 
Lao Republic 58.77 20.31 53.21 14.93 
Nepal 72.3 46.49 62.47 41.36 
Sri Lanka 89.18 71.53 79.38 26.35 
Thailand 46.01 46.99 35.72 35.21 

Potatoes Bangladesh 64.25 22.84 57.51 16.24 
China 39.53 4.83 42.4 6.73 
India 27.86 -8.02 30.37 -8.36 
Kyrgyzstan 67.58 67.43 78.46 72.59 
Nepal 46.21 18.21 48.56 21.84 
Pakistan 34.98  24.76  
Tajikistan 45.38 16.4 -45.39 -56.74 
Uzbekistan 59.77 18.93 62.72 20.68 
Vietnam 23.63 -0.82 25.46 -1.32 
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Table B.1 Continued 
  NoCC CC 
Crop Country Irrigated Rainfed Irrigated Rainfed 
Sorghum Burkina Faso 55.81 71.31 57.36 72.82 

Eritrea -8.02 1.17 -7.50 1.75 
Ethiopia 75.13 87.19 99.40 112.74 
India 73.63 61.85 30.58 32.76 
Mali 139.33 176.39 121.87 153.97 
Nigeria  85.72  75.60 
Sudan 223.85 33.21 116.91 4.83 
Tanzania 24.85 38.41 26.14 39.87 

Groundnut Burkina Faso  82.15  16.53 
Ghana -0.82 9.21 3.55 14.02 
India 2.33 0.17 -13.22 -16.33 
Malawi 17.81 18.5 18.42 19.11 
Mali 52.69 26.95 56.73 29.02 
Myanmar 23.1 16.07 25.36 18.2 
Niger 71.29 7.87 64.34 4.32 
Nigeria 38.28 33.74 36.33 30.87 
Tanzania 257.24 -10.8 264.13 -8.55 
Uganda 161.09 2.2 178.95 9.19 
Vietnam 30.81 5.98 16.10 -5.69 

Source:  Authors. 
Notes:  CC = climate change; NoCC = assumed constant climate.  
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APPENDIX C:  ADOPTION RATES FOR EACH CROP, BY TECHNOLOGY AND COUNTRY 

Table C.1 Adoption rates for each crop, by technology and country 
Crop Technology Country Start 

year 
End 
year 

Max 
adoption 

Irrigated 
max 

adoption 

Rainfed 
max 

adoption 

Median  
year 

Maize Drought tolerance Angola 2013 2050 30%  29.90% 2021 

Maize Drought tolerance Benin 2013 2050 30%  29.78% 2021 

Maize Drought tolerance Ethiopia 2013 2050 30% 30.00% 30.00% 2021 

Maize Drought tolerance Ghana 2013 2050 30%  22.72% 2021 

Maize Drought tolerance Kenya 2013 2050 30%  30.00% 2021 

Maize Drought tolerance Malawi 2013 2050 30% 30.00% 30.00% 2021 

Maize Drought tolerance Mali 2013 2050 30%  29.53% 2021 

Maize Drought tolerance Mozambique 2013 2050 30% 27.41% 29.55% 2021 

Maize Drought tolerance Tanzania 2013 2050 30% 30.00% 30.00% 2021 

Maize Drought tolerance Uganda 2013 2050 30%  30.00% 2021 

Maize Drought tolerance Zambia 2013 2050 30%  30.00% 2021 

Maize Drought tolerance Zimbabwe 2013 2050 30% 30.00% 30.00% 2021 

Maize Heat tolerance Bangladesh 2017 2032 30% 30.00%  2022 

Maize Heat tolerance India 2017 2032 30% 30.00% 30.00% 2022 

Maize Heat tolerance Nepal 2017 2032 30% 30.00% 30.00% 2022 

Maize Heat tolerance Pakistan 2017 2032 30% 30.00%  2022 

Wheat Drought tolerance Iran 2015 2050 35% 32.14% 33.50% 2023 

Wheat Drought tolerance Turkey 2015 2050 35% 35.00% 35.00% 2023 

Wheat Heat tolerance India 2020 2050 30% 29.35%  2028 

Wheat Heat tolerance Pakistan 2020 2050 30% 30.00%  2028 

Wheat 
Drought and heat tolerance 
with high yield Argentina 2022 2050 30% 29.35% 30.00% 2027 

Wheat 
Drought and heat tolerance 
with high yield South Africa 2022 2050 30% 28.10% 30.00% 2027 
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Table C.1 Continued 
Crop Technology Country Start 

year 
End 
year 

Max 
adoption 

Irrigated 
max 

adoption 

Rainfed 
max 

adoption 

Median  
year 

Rice Drought tolerance Bangladesh 2015 2040 25% 0.13% 25.00% 2030 

Rice Drought tolerance Cambodia 2015 2040 21% 12.50% 21.00% 2030 

Rice Drought tolerance India 2015 2040 35% 21.81% 35.00% 2030 

Rice Drought tolerance Lao Republic 2015 2040 16% 0.38% 16.00% 2030 

Rice Drought tolerance Nepal 2015 2040 16%  16.00% 2030 

Rice Drought tolerance Sri Lanka 2015 2040 40% 10.54% 40.00% 2030 

Rice Drought tolerance Thailand 2015 2040 40% 1.85% 32.94% 2030 

Potatoes Drought tolerance Bangladesh 2024 2034 4% 4.00% 4.00% 2029 

Potatoes Drought tolerance China 2024 2034 4%  3.91% 2029 

Potatoes Drought tolerance India 2024 2034 10%  10.00% 2029 

Potatoes Drought tolerance Kyrgyzstan 2024 2034 20% 20.00% 20.00% 2029 

Potatoes Drought tolerance Nepal 2024 2034 20%  20.00% 2029 

Potatoes Drought tolerance Pakistan 2024 2034 10% 10.00%  2029 

Potatoes Drought tolerance Tajikistan 2024 2034 30% 30.00%  2029 

Potatoes Drought tolerance Uzbekistan 2024 2034 40%  40.00% 2029 

Potatoes Drought tolerance Vietnam 2024 2034 20%  20.00% 2029 

Potatoes Heat tolerance Bangladesh 2024 2034 4%  4.00% 2029 

Potatoes Heat tolerance China 2024 2034 4%  3.10% 2029 

Potatoes Heat tolerance India 2024 2034 10%  9.93% 2029 

Potatoes Heat tolerance Kyrgyzstan 2024 2034 20% 20.00% 20.00% 2029 

Potatoes Heat tolerance Nepal 2024 2034 20%  20.00% 2029 

Potatoes Heat tolerance Pakistan 2024 2034 10%   2029 

Potatoes Heat tolerance Tajikistan 2024 2034 40% 22.93%  2029 

Potatoes Heat tolerance Uzbekistan 2024 2034 30%  30.00% 2029 

Potatoes Heat tolerance Vietnam 2024 2034 20%  7.69% 2029 
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Table C.1 Continued 
Crop Technology Country Start 

year 
End 
year 

Max 
adoption 

Irrigated 
max 

adoption 

Rainfed 
max 

adoption 

Median  
year 

Potatoes Drought and heat tolerance Bangladesh 2024 2034 4% 4.00% 4.00% 2029 

Potatoes Drought and heat tolerance China 2024 2034 4%  3.10% 2029 

Potatoes Drought and heat tolerance India 2024 2034 10%  10.00% 2029 

Potatoes Drought and heat tolerance Kyrgyzstan 2024 2034 20% 20.00% 20.00% 2029 

Potatoes Drought and heat tolerance Nepal 2024 2034 20%  20.00% 2029 

Potatoes Drought and heat tolerance Pakistan 2024 2034 10% 10.00%  2029 

Potatoes Drought and heat tolerance Tajikistan 2024 2034 40% 40.00%  2029 

Potatoes Drought and heat tolerance Uzbekistan 2024 2034 30%  30.00% 2029 

Potatoes Drought and heat tolerance Vietnam 2024 2034 20%  10.93% 2029 

Sorghum Drought tolerance Burkina Faso 2023 2037 20%  20.00% 2030 

Sorghum Drought tolerance Eritrea 2023 2035 40%  40.00% 2029 

Sorghum Drought tolerance Ethiopia 2023 2035 40% 40.00% 40.00% 2029 

Sorghum Drought tolerance India 2023 2032 80% 80.00% 80.00% 2028 

Sorghum Drought tolerance Mali 2023 2035 50% 48.60% 50.00% 2029 

Sorghum Drought tolerance Nigeria 2023 2035 60%  60.00% 2029 

Sorghum Drought tolerance Sudan 2023 2038 20% 19.53% 20.00% 2033 

Sorghum Drought tolerance Tanzania 2023 2035 40%  40.00% 2029 

Groundnut Drought tolerance Burkina Faso 2024 2040 40%  40.00% 2033 

Groundnut Drought tolerance Ghana 2024 2040 40%  40.00% 2033 

Groundnut Drought tolerance India 2024 2035 60% 54.94% 60.00% 2030 

Groundnut Drought tolerance Malawi 2024 2040 60%  60.00% 2033 

Groundnut Drought tolerance Mali 2024 2040 50%  50.00% 2033 

Groundnut Drought tolerance Myanmar 2024 2035 40%  40.00% 2030 

Groundnut Drought tolerance Niger 2024 2040 40%  40.00% 2033 

Groundnut Drought tolerance Nigeria 2024 2040 60%  60.00% 2033 

Groundnut Drought tolerance Tanzania 2024 2040 40%  40.00% 2033 

Groundnut Drought tolerance Uganda 2024 2040 60%  60.00% 2033 

Groundnut Drought tolerance Vietnam 2024 2035 50% 45.91% 50.00% 2030 



 

50 

Table C.1 Continued 
Crop Technology Country Start 

year 
End 
year 

Max 
adoption 

Irrigated 
max 

adoption 

Rainfed 
max 

adoption 

Median 
 year 

Groundnut Heat tolerance Burkina Faso 2024 2040 40%  40.00% 2033 

Groundnut Heat tolerance Ghana 2024 2040 40%  40.00% 2033 

Groundnut Heat tolerance India 2024 2035 60% 60.00% 60.00% 2030 

Groundnut Heat tolerance Malawi 2024 2040 60%  60.00% 2033 

Groundnut Heat tolerance Mali 2024 2040 50%  50.00% 2033 

Groundnut Heat tolerance Myanmar 2024 2035 40%  39.62% 2030 

Groundnut Heat tolerance Niger 2024 2040 40%  40.00% 2033 

Groundnut Heat tolerance Nigeria 2024 2040 60%  60.00% 2033 

Groundnut Heat tolerance Tanzania 2024 2040 40%  40.00% 2033 

Groundnut Heat tolerance Uganda 2024 2040 60%  60.00% 2033 

Groundnut Heat tolerance Vietnam 2024 2035 50% 50.00% 50.00% 2030 

Groundnut Drought and heat tolerance Burkina Faso 2024 2040 40%  40.00% 2033 

Groundnut Drought and heat tolerance Ghana 2024 2040 40%  40.00% 2033 

Groundnut Drought and heat tolerance India 2024 2035 60% 60.00% 60.00% 2030 

Groundnut Drought and heat tolerance Malawi 2024 2040 60%  60.00% 2033 

Groundnut Drought and heat tolerance Mali 2024 2040 50%  50.00% 2033 

Groundnut Drought and heat tolerance Myanmar 2024 2035 40%  40.00% 2030 

Groundnut Drought and heat tolerance Niger 2024 2040 40%  40.00% 2033 

Groundnut Drought and heat tolerance Nigeria 2024 2040 60%  60.00% 2033 

Groundnut Drought and heat tolerance Tanzania 2024 2040 40%  40.00% 2033 

Groundnut Drought and heat tolerance Uganda 2024 2040 60%  60.00% 2033 

Groundnut Drought and heat tolerance Vietnam 2024 2035 50% 50.00% 50.00% 2030 
Source:  Authors.  
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APPENDIX D:  EXOGENOUS AND ENDOGENOUS COUNTRY-LEVEL RESULTS: 
TECHNOLOGY ADOPTION SCENARIOS 

Table D.1 Exogenous yield change (percent) from technology adoption compared with base (2050 
climate change) 

Crop Technology Country Irrigated Rainfed 
Maize Drought tolerance Angola 0.00 11.72 

Benin 0.00 10.87 
Ethiopia 37.13 5.50 
Ghana 0.00 7.84 
Kenya 0.00 113.61 
Mali 0.00 7.38 
Mozambique 13.68 43.20 
Malawi 3.22 3.12 
Tanzania 126.08 114.50 
Uganda 0.00 64.98 
Zambia 0.00 18.66 
Zimbabwe 1.25 3.22 

Heat tolerance Bangladesh 142.90 0.00 
India 43.67 41.47 
Nepal 44.76 80.67 
Pakistan 178.34 0.00 

Wheat Drought tolerance  Iran 0.21 7.24 
Turkey 0.25 5.16 

Heat tolerance India 4.13 0.00 
Pakistan 9.13 0.00 

Heat tolerance with drought tolerance Argentina 0.37 9.38 
South Africa 13.61 11.69 

Rice Drought tolerance Bangladesh 0.02 0.59 
India 0.95 1.59 
Cambodia 0.02 0.72 
Lao Republic 0.01 0.63 
Sri Lanka 0.01 3.54 
Nepal 0.00 0.46 
Thailand 0.01 0.93 

Potatoes Drought tolerance Bangladesh 0.57 18.24 
China 0.00 4.79 
India 0.00 10.75 
Kyrgyzstan 5.36 8.75 
Nepal 0.00 9.73 
Pakistan 1.47 0.00 
Tajikistan 0.91 0.00 
Uzbekistan 0.00 15.43 
Vietnam 0.00 9.12 
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Table D.1 Exogenous yield change (percent) from technology adoption compared with base (2050 
climate change) 

Crop Technology Country Irrigated Rainfed 
Potatoes Heat tolerance Bangladesh 0.00 0.40 

 

 

China 0.00 4.81 
India 0.00 0.80 
Kyrgyzstan 6.31 1.09 
Nepal 0.00 2.08 
Tajikistan 0.42 0.00 
Uzbekistan 0.00 0.78 
Vietnam 0.00 7.26 

Heat tolerance with drought tolerance Bangladesh 1.14 17.81 
China 0.00 9.17 
India 0.00 11.31 
Kyrgyzstan 71.69 9.70 
Nepal 0.00 10.53 
Pakistan 1.47 0.00 
Tajikistan 46.27 0.00 
Uzbekistan 0.00 15.78 
Vietnam 0.00 14.51 

Sorghum Drought tolerance Burkina Faso 0.00 3.27 
Eritrea 0.00 144.06 
Ethiopia 4.65 1.83 
India 0.17 2.14 
Mali 0.74 1.31 
Nigeria 0.00 0.82 
Sudan 1.89 2.80 
Tanzania 0.00 110.10 

Groundnut Drought tolerance Burkina Faso 0.00 6.43 
Ghana 0.00 20.67 
India 0.31 4.49 
Mali 0.00 16.55 
Myanmar 0.00 0.99 
Malawi 0.00 10.39 
Niger 0.00 9.31 
Nigeria 0.00 4.11 
Tanzania 0.00 9.99 
Uganda 0.00 4.99 
Vietnam 0.07 1.87 
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Table D.1 Continued 

Crop Technology Country Irrigated Rainfed 
Groundnut Heat tolerance Burkina Faso 0.00 12.14 

 

 

Ghana 0.00 23.24 
India 11.96 8.19 
Mali 0.00 9.86 
Myanmar 0.00 4.31 
Malawi 0.00 0.54 
Niger 0.00 22.82 
Nigeria 0.00 5.64 
Tanzania 0.00 0.95 
Uganda 0.00 1.36 
Vietnam 9.04 6.35 

Drought and heat tolerance with high 
yield 

Burkina Faso 0.00 33.21 
Ghana 0.00 44.86 
India 27.15 27.14 
Mali 0.00 42.99 
Myanmar 0.00 18.39 
Malawi 0.00 26.51 
Niger 0.00 50.03 
Nigeria 0.00 22.81 
Tanzania 0.00 25.88 
Uganda 0.00 19.94 
Vietnam 22.10 21.21 

Source:  Authors.  

Table D.2 Endogenous average yield changes (percent difference of technology from base) when 
price feedbacks are included (2050 climate change) 

Crop Technology Country Irrigated Rainfed 
Maize Drought tolerance Angola  8.10 

Benin  3.10 

Ethiopia 10.72 1.54 

Ghana  1.64 

Kenya  112.07 

Mali  2.08 

Mozambique 0.27 30.76 

Malawi 0.81 0.78 

Tanzania 75.62 69.02 

Uganda  62.42 

Zambia  15.00 

Zimbabwe 0.23 0.82 
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Table D.2 Continued 
Crop Technology Country Irrigated Rainfed 
Maize Heat tolerance Bangladesh 42.71  

  
India 13.29 12.50 

Nepal 13.32 24.08 

Pakistan 52.67  
Wheat Drought tolerance  Iran 0.05 2.43 

Turkey 0.07 1.79 
Heat tolerance India 1.07  

Pakistan 0.47  
Heat tolerance with drought  
tolerance 

Argentina 0.14 2.80 

South Africa 5.32 3.54 
Rice Drought tolerance Bangladesh -0.01 0.14 

India 0.05 0.54 

Cambodia 0.00 0.15 

Lao Republic 0.00 0.10 

Sri Lanka 0.00 1.44 

Nepal  0.07 

Thailand 0.00 0.32 
Potatoes Drought tolerance Bangladesh -0.01 0.70 

China  0.16 

India  1.04 

Kyrgyzstan 1.53 1.72 

Nepal  1.92 

Pakistan 0.18  

Tajikistan 0.24  

Uzbekistan  6.14 

Vietnam  1.80 
Heat tolerance Bangladesh  0.00 

China  0.12 

India  0.06 

Kyrgyzstan 1.73 0.21 

Nepal  0.41 

Pakistan 0.08  

Tajikistan  0.22 

Uzbekistan  0.60 

Vietnam -0.02 0.65 
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Table D.2 Continued 
Crop Technology Country Irrigated Rainfed 
Potatoes Heat tolerance with drought  

tolerance Bangladesh  0.20 

  

China  1.06 
India 14.72 1.88 
Kyrgyzstan  2.05 
Nepal 0.15  
Pakistan 18.43  
Tajikistan  4.67 
Uzbekistan  1.55 
Vietnam  4.07 

Sorghum Drought tolerance Burkina 
Faso  151.53 
Eritrea 1.18 0.31 
Ethiopia -0.27 1.30 
India -0.06 0.22 
Mali  0.14 
Nigeria -0.42 0.13 
Sudan  118.00 
Tanzania -0.01 0.70 

Groundnut Drought tolerance Burkina 
Faso  2.41 
Ghana  16.91 
India 0.16 2.55 
Mali  8.11 
Myanmar  0.29 
Malawi  6.04 
Niger  3.58 
Nigeria  2.35 
Tanzania  3.80 
Uganda  2.79 
Vietnam -0.09 0.81 

 Heat tolerance Burkina 
Faso  4.59 
Ghana  17.87 
India 7.14 4.81 
Mali  4.70 
Myanmar  1.57 
Malawi  0.05 
Niger  8.89 
Nigeria  3.20 
Tanzania  0.11 
Uganda  0.55 
Vietnam 4.24 3.00 
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Table D.2 Continued 
Crop Technology Country Irrigated Rainfed 
Groundnut Drought tolerance with high yield Burkina Faso  12.46 

  

Ghana  25.96 

India 15.75 15.70 

Mali  20.67 

Myanmar  6.86 

Malawi  14.96 

Niger  19.23 

Nigeria  13.07 

Tanzania  9.45 

Uganda  11.03 

Vietnam 10.38 10.03 

Source:  Authors.  

Table D.3 Endogenous changes in production between technology and base by crop, technology, 
and country, 2050 climate change 

Crop Technology Country Irrigated Rainfed 
Maize Drought tolerance Angola  7.86 

Benin  2.93 

Ethiopia 10.5 1.36 

Ghana  1.46 

Kenya  111.69 

Mali  1.89 

Mozambique 0.12 30.44 

Malawi 0.64 0.57 

Tanzania 75.29 68.7 

Uganda  62.06 

Zambia  14.76 

Zimbabwe 0.12 0.64 
Heat tolerance Bangladesh 42.62  

India 13.08 12.14 

Nepal 13.19 23.88 

Pakistan 52.45  
Wheat Drought tolerance  Iran 0.04 2.41 

Turkey 0.05 1.76 
Heat tolerance India 1.03  

Pakistan 0.41  
Heat tolerance with drought  
tolerance 

Argentina 0.09 2.73 

South Africa 5.12 3.24 

 

  



 

57 

Table D.3 Continued 

Crop Technology Country Irrigated Rainfed 
Rice Drought tolerance Bangladesh -0.01 0.14 

India 0.04 0.51 

Cambodia 0 0.14 

Lao Republic 0 0.09 

Sri Lanka -0.01 1.42 

Nepal  0.06 

Thailand -0.01 0.31 
Potatoes Drought tolerance Bangladesh -0.03 0.65 

China  0.12 

India  0.99 

Kyrgyzstan 1.51 1.68 

Nepal  1.88 

Pakistan 0.16  

Tajikistan 0.22  

Uzbekistan  6.11 

Vietnam  1.76 
Heat tolerance Bangladesh  -0.01 

China  0.11 

India  0.04 

Kyrgyzstan 1.72 0.18 

Nepal  0.39 

Tajikistan 0.08  

Uzbekistan  0.21 

Vietnam  0.59 
Heat tolerance with drought tolerance Bangladesh -0.06 0.56 

China  0.13 

India  0.96 

Kyrgyzstan 14.68 1.8 

Nepal  1.97 

Pakistan 0.11  

Tajikistan 18.39  

Uzbekistan  4.6 

Vietnam  1.48 
Sorghum Drought tolerance Burkina Faso  3.15 

Eritrea  149.7 

Ethiopia 0.52 -0.82 

India -0.95 0.13 

Mali -0.71 -0.75 

Nigeria  -1.18 

Sudan -0.68 -0.39 

Tanzania  114.3 
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Table D.3 Continued 

Crop Technology Country Irrigated Rainfed 
Groundnut Drought tolerance Burkina Faso  1.86 

Ghana  16.38 

India -0.13 2.01 

Mali  7.57 

Myanmar  -0.21 

Malawi  5.27 

Niger  2.98 

Nigeria  1.64 

Tanzania  2.96 

Uganda  1.95 

Vietnam -0.35 0.32 
 Heat tolerance Burkina Faso  3.83 

Ghana  17.01 

India 6.73 4.15 

Mali  4.02 

Myanmar  0.88 

Malawi  -0.97 

Niger  8.07 

Nigeria  2.2 

Tanzania  -1.02 

Uganda  -0.6 

Vietnam 3.86 2.34 
Drought and heat tolerance with high 
yield 

Burkina Faso  9.92 

Ghana  22.34 

India 14.37 13.38 

Mali  18.2 

Myanmar  4.64 

Malawi  11.48 

Niger  16.38 

Nigeria  9.73 

Tanzania  5.68 

Uganda  7.17 

Vietnam 9.13 7.86 

Source:  Authors.  
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Table D.4 Endogenous changes in harvested area between technology and base by crop, technology, 
and country, 2050 climate change 

Crop Technology Country Irrigated Rainfed 
Maize Drought tolerance Angola -0.15 -0.23 

Benin -0.10 -0.16 
Ethiopia -0.20 -0.18 
Ghana -0.10 -0.18 
Kenya -0.11 -0.18 
Mali -0.10 -0.19 
Mozambique -0.15 -0.24 
Malawi -0.17 -0.21 
Tanzania -0.19 -0.19 
Uganda -0.11 -0.22 
Zambia -0.11 -0.21 
Zimbabwe -0.11 -0.18 

Heat tolerance Bangladesh -0.06 -0.13 
India -0.18 -0.32 
Nepal -0.11 -0.16 
Pakistan -0.14  

Wheat Drought tolerance  Iran -0.02 -0.03 
Turkey -0.02 -0.03 

Heat tolerance India -0.04 -0.09 
Pakistan -0.06  

Heat tolerance with drought tolerance Argentina -0.04 -0.07 
South Africa -0.19 -0.29 

Rice Drought tolerance Bangladesh 0.00 -0.01 
India -0.01 -0.03 
Cambodia 0.00 0.00 
Lao Republic 0.00 0.00 
Sri Lanka 0.00 -0.01 
Nepal 0.00 -0.01 
Thailand 0.00 -0.01 

Potatoes Drought tolerance Bangladesh -0.02 -0.04 
China -0.02 -0.04 
India -0.03 -0.05 
Kyrgyzstan -0.02 -0.04 
Nepal -0.02 -0.04 
Pakistan -0.02  
Tajikistan -0.02 -0.03 
Uzbekistan -0.02 -0.03 
Vietnam -0.02 -0.04 
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Table D.4 Continued 

Crop Technology Country Irrigated Rainfed 
Potatoes Heat tolerance Bangladesh -0.01 -0.02 

 

 

China -0.01 -0.01 
India -0.01 -0.02 
Kyrgyzstan -0.01 -0.02 
Nepal -0.01 -0.02 
Pakistan -0.01  
Tajikistan -0.01 -0.01 
Uzbekistan -0.01 -0.01 
Vietnam -0.01 -0.01 

Heat tolerance with drought tolerance Bangladesh -0.04 -0.08 
China -0.04 -0.07 
India -0.05 -0.10 
Kyrgyzstan -0.04 -0.07 
Nepal -0.04 -0.08 
Pakistan -0.04  
Tajikistan -0.03 -0.06 
Uzbekistan -0.03 -0.06 
Vietnam -0.04 -0.07 

Sorghum Drought tolerance Burkina Faso -0.55 -0.88 
Eritrea -0.16 -0.73 
Ethiopia -0.66 -1.12 
India -0.68 -1.16 
Mali -0.64 -0.96 
Nigeria  -1.32 
Sudan -0.26 -0.53 
Tanzania -0.89 -1.70 

Groundnut Drought tolerance Burkina Faso  -0.53 
Ghana 0.16 -0.45 
India -0.29 -0.53 
Mali -0.29 -0.50 
Myanmar -0.25 -0.50 
Malawi -0.35 -0.73 
Niger -0.28 -0.57 
Nigeria -0.12 -0.70 
Tanzania -0.41 -0.81 
Uganda -0.41 -0.81 
Vietnam -0.26 -0.48 
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Table D.4 Continued 

Crop Technology Country Irrigated Rainfed 
Groundnut Heat tolerance Burkina Faso  -0.73 

 

 

Ghana 0.07 -0.73 
India -0.38 -0.64 
Mali -0.41 -0.65 
Myanmar -0.34 -0.68 
Malawi -0.49 -1.02 
Niger -0.36 -0.76 
Nigeria -0.13 -0.97 
Tanzania -0.57 -1.13 
Uganda -0.57 -1.14 
Vietnam -0.37 -0.64 

Drought and heat tolerance with high 
yield 

Burkina Faso  -2.26 
Ghana -0.73 -2.88 
India -1.19 -2.01 
Mali -1.27 -2.05 
Myanmar -1.05 -2.08 
Malawi -1.43 -3.03 
Niger -1.17 -2.39 
Nigeria -0.30 -2.96 
Tanzania -1.77 -3.45 
Uganda -1.76 -3.48 
Vietnam -1.13 -1.98 

Source:  Authors.  

Table D.5 Endogenous changes in trade as a ratio of net trade over national production—by crop, 
technology, and country, 2050 climate change  

Crop Technology Country Trade 
Index 

Maize Drought tolerance Angola -0.63 
Benin 0.13 
Ethiopia -0.93 
Ghana -1.07 
Kenya -0.64 
Mali -0.97 
Mozambique -0.46 
Malawi -3.57 
Tanzania -3.08 
Uganda -0.35 
Zambia -1.04 
Zimbabwe 0.49 

Heat tolerance Bangladesh -0.67 
India -1.41 
Nepal -0.81 
Pakistan 0.26 
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Table D.5 Continued  

Crop Technology Country Trade 
Index 

Wheat Drought tolerance  Argentina 0.75 
South Africa -0.36 

Heat tolerance Iran 0.54 
Turkey 0.19 

Heat tolerance with drought tolerance India -0.22 
Pakistan -0.39 

Rice Drought tolerance Bangladesh 0.07 
India 0.04 
Cambodia 0.10 
Lao Republic 0.26 
Sri Lanka 0.44 
Nepal -0.21 
Thailand 0.48 

Potatoes Drought tolerance Bangladesh -0.43 
China 0.06 
India -0.02 
Kyrgyzstan 0.53 
Nepal -0.58 
Pakistan -0.28 
Tajikistan 0.10 
Uzbekistan 0.26 
Vietnam -0.22 

Heat tolerance Bangladesh -0.43 
China 0.06 
India -0.02 
Kyrgyzstan 0.48 
Nepal -0.58 
Pakistan -0.28 
Tajikistan -0.04 
Uzbekistan 0.27 
Vietnam -0.22 

Heat tolerance with drought tolerance Bangladesh -0.43 
China 0.06 
India -0.02 
Kyrgyzstan 0.48 
Nepal -0.60 
Pakistan -0.28 
Tajikistan -0.05 
Uzbekistan 0.26 
Vietnam -0.23 
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Table D.5 Continued  

Crop Technology Country Trade 
Index 

Sorghum Drought tolerance Burkina Faso -0.11 
Eritrea 0.07 
Ethiopia -0.02 
India -0.18 
Mali 0.31 
Nigeria -0.63 
Sudan 0.07 
Tanzania 0.49 

Groundnut Drought tolerance Burkina Faso 0.43 
Ghana 0.27 
India 0.17 
Mali 0.20 
Myanmar 0.32 
Malawi -0.17 
Niger -0.67 
Nigeria -0.26 
Tanzania -0.10 
Uganda 0.03 
Vietnam 0.37 

 Heat tolerance Burkina Faso 0.40 
Ghana 0.26 
India 0.10 
Mali 0.15 
Myanmar 0.30 
Malawi -0.23 
Niger -0.77 
Nigeria -0.29 
Tanzania -0.12 
Uganda -0.01 
Vietnam 0.33 

Drought and heat tolerance with high 
yield 

Burkina Faso 0.40 
Ghana 0.26 
India 0.11 
Mali 0.11 
Myanmar 0.31 
Malawi -0.29 
Niger -0.76 
Nigeria -0.29 
Tanzania -0.15 
Uganda -0.03 
Vietnam 0.34 

Source:  Authors.  
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APPENDIX E:  EXOGENOUS AND ENDOGENOUS COUNTRY-LEVEL RESULTS: 
CASSAVA SCENARIOS 

Table E.1 Exogenous average yield change (percent difference) from mealybug scenario and 
technology adoption scenarios compared with baseline (2050—GFDL) 

Scenario Country Irrigated Rainfed 
Mealybug China  -1.66 

India  -8.56 
Indonesia -13.20 -13.23 
Lao Republic  -13.87 
Myanmar  -11.16 
Thailand  -15.99 
Vietnam -11.49 -11.65 

CBIOL1 China  -1.66 
India  -8.56 
Indonesia -13.20 -13.23 
Lao Republic  -13.87 
Myanmar  -11.16 
Thailand  -2.26 
Vietnam -11.49 -11.65 

CBIOL2 China  -0.59 
India  -3.32 
Indonesia -5.22 -5.23 
Lao Republic  -5.53 
Myanmar  -4.36 
Thailand  -2.26 
Vietnam -4.50 -4.57 

CBIOL3 China  -0.20 
India  -1.08 
Indonesia -1.77 -1.77 
Lao Republic  -1.87 
Myanmar  -1.47 
Thailand  -2.26 
Vietnam -1.55 -1.58 

Source:  Authors.  
Notes:  The values in the table indicate the percent change compared with the baseline. The baseline represents an ideal case in 

which cassava has not been exposed to the mealybug pest. The scenarios are as follows: Mealybug = Untreated pest 
infestation. CBIOL1 = Mealybug wasps are applied only in Thailand. CBIOL2 = Mealybug wasps are applied in all 
countries, but less completely than in Thailand. CBIOL3 = Mealybug treatment applied completely in all targeted 
countries. 
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Table E.2 Endogenous average yield change (percent difference) from mealybug scenario and 
technology adoption scenarios compared with baseline (2050, GFDL) 

Scenario Country Irrigated Rainfed 
Mealybug China  -1.36 

India  -8.37 
Indonesia -12.91 -12.94 
Lao 
Republic  -13.60 
Myanmar  -10.94 
Thailand  -15.71 
Vietnam -11.27 -11.43 

CBIOL1 China  -1.45 
India  -8.42 
Indonesia -13.00 -13.03 
Lao 
Republic  -13.68 
Myanmar  -11.01 
Thailand  -2.03 
Vietnam -11.34 -11.49 

CBIOL2 China  -0.50 
India  -3.25 
Indonesia -5.12 -5.14 
Lao 
Republic  -5.44 
Myanmar  -4.29 
Thailand  -2.16 
Vietnam -4.43 -4.50 

CBIOL3 China  -0.16 
India  -1.06 
Indonesia -1.72 -1.73 
Lao 
Republic  -1.83 
Myanmar  -1.44 
Thailand  -2.22 
Vietnam -1.52 -1.54 

Source:  Authors.  
Notes:  The values in the table indicate the percent change compared with the baseline. The baseline represents an ideal case in 

which cassava has not been exposed to the mealybug pest. Price feedback is included. The scenarios are as follows: 
Mealybug = Untreated pest infestation. CBIOL1 = Mealybug wasps are applied only in Thailand. CBIOL2 = Mealybug 
wasps are applied in all countries, but less completely than in Thailand. CBIOL3 = Mealybug treatment applied 
completely in all targeted countries. 
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Table E.3 Endogenous changes in production (percent difference) compared with baseline (2050, 
GFDL) 

Scenario Country Irrigated Rainfed 
Mealybug China  -0.88 

India  -7.93 
Indonesia -12.51 -12.15 
Lao Republic  -13.19 
Myanmar  -10.51 
Thailand  -15.26 
Vietnam -11.06 -11.01 

CBIOL1 China  -1.12 
India  -8.12 
Indonesia -12.72 -12.48 
Lao Republic  -13.39 
Myanmar  -10.70 
Thailand  -1.67 
Vietnam -11.19 -11.20 

CBIOL2 China  -0.35 
India  -3.11 
Indonesia -4.99 -4.88 
Lao Republic  -5.30 
Myanmar  -4.15 
Thailand  -2.00 
Vietnam -4.36 -4.36 

CBIOL3 China  -0.09 
India  -0.99 
Indonesia -1.66 -1.61 
Lao Republic  -1.77 
Myanmar  -1.38 
Thailand  -2.15 
Vietnam -1.49 -1.48 

Source:  Authors.  
Notes:  The values in the table indicate the percent change compared with the baseline. The baseline represents an ideal case in 

which cassava has not been exposed to the mealybug pest. Price feedback is included. The scenarios are as follows: 
Mealybug = Untreated pest infestation. CBIOL1 = Mealybug wasps are applied only in Thailand. CBIOL2 = Mealybug 
wasps are applied in all countries, but less completely than in Thailand. CBIOL3 = Mealybug treatment applied 
completely in all targeted countries. 
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Table E.4 Endogenous percent change in harvested area compared with base (2050, GFDL climate 
change scenario) 

Scenario Country Irrigated Rainfed 
Mealybug China  0.49 

India  0.48 
Indonesia 0.45 0.91 
Lao Republic  0.49 
Myanmar  0.49 
Thailand  0.53 
Vietnam 0.24 0.48 

CBIOL1 China  0.34 
India  0.34 
Indonesia 0.32 0.63 
Lao Republic  0.34 
Myanmar  0.34 
Thailand  0.37 
Vietnam 0.17 0.33 

CBIOL2 China  0.15 
India  0.14 
Indonesia 0.14 0.27 
Lao Republic  0.15 
Myanmar  0.15 
Thailand  0.16 
Vietnam 0.07 0.14 

CBIOL3 China  0.06 
India  0.06 
Indonesia 0.06 0.12 
Lao Republic  0.06 
Myanmar  0.07 
Thailand  0.07 
Vietnam 0.03 0.06 

Source:  Authors.  
Notes:  The values in the table indicate the percent change compared with the baseline. The baseline represents an ideal case in 

which cassava has not been exposed to the mealybug pest. Price feedback is included. The scenarios are as follows: 
Mealybug = Untreated pest infestation. CBIOL1 = Mealybug wasps are applied only in Thailand. CBIOL2 = Mealybug 
wasps are applied in all countries, but less completely than in Thailand. CBIOL3 = Mealybug treatment applied 
completely in all targeted countries. 
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Table E.5 Endogenous effect of scenarios on trade—ratio of net trade over national production 
(2050, GFDL climate change scenario) 

Scenario Country 2050 
Mealybug China -3.66 

India -0.33 
Indonesia -0.10 
Lao 
Republic -0.98 
Myanmar 0.03 
Thailand 0.47 
Vietnam 0.66 

CBIOL1 China -3.68 
India -0.34 
Indonesia -0.10 
Lao 
Republic -0.99 
Myanmar 0.03 
Thailand 0.54 
Vietnam 0.66 

CBIOL2 China -3.65 
India -0.27 
Indonesia -0.01 
Lao 
Republic -0.82 
Myanmar 0.09 
Thailand 0.54 
Vietnam 0.68 

CBIOL3 China -3.65 
India -0.24 
Indonesia 0.02 
Lao 
Republic -0.76 
Myanmar 0.12 
Thailand 0.53 
Vietnam 0.69 

Source:  Authors.  
Notes:  The values in the table indicate the percent change compared with the baseline. The baseline represents an ideal case in 

which cassava has not been exposed to the mealybug pest. Price feedback is included. The scenarios are as follows: 
Mealybug = Untreated pest infestation. CBIOL1 = Mealybug wasps are applied only in Thailand. CBIOL2 = Mealybug 
wasps are applied in all countries, but less completely than in Thailand. CBIOL3 = Mealybug treatment applied 
completely in all targeted countries. 
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