35 research outputs found
Going beyond (electronic) patient-reported outcomes: harnessing the benefits of smart technology and ecological momentary assessment in cancer survivorship research
Rapid developments in digital mobile and sensor technology have facilitated the active and passive collection of detailed, personalized data in increasingly affordable ways. Researchers may be familiar with the daily diary, portable computers, or the pedometer for the collection of patientreported outcomes (PRO) in cancer survivorship research. Such methods, termed ecological momentary assessment (EMA), have evolved with technological advances, e.g., collecting data or providing interventions (ecological momentary intervention, EMI) via apps or devices such as smartphones. These smart technology-adapted sEMA/ sEMI methods are more widely used in affective disorders or addictive behavior research but are currently still under-utilized in cancer survivorship research. A recent scoping review on the use of active EMA among cancer survivors identified twelve articles published between 1993 and 2018. Most of the included studies in that review used portable computers. This commentary will discuss the utility of sEMA/sEMI in cancer survivorship research and call for action to advance this area of science
EMMA—mouse mutant resources for the international scientific community
The laboratory mouse is the premier animal model for studying human disease and thousands of mutants have been identified or produced, most recently through gene-specific mutagenesis approaches. High throughput strategies by the International Knockout Mouse Consortium (IKMC) are producing mutants for all protein coding genes. Generating a knock-out line involves huge monetary and time costs so capture of both the data describing each mutant alongside archiving of the line for distribution to future researchers is critical. The European Mouse Mutant Archive (EMMA) is a leading international network infrastructure for archiving and worldwide provision of mouse mutant strains. It operates in collaboration with the other members of the Federation of International Mouse Resources (FIMRe), EMMA being the European component. Additionally EMMA is one of four repositories involved in the IKMC, and therefore the current figure of 1700 archived lines will rise markedly. The EMMA database gathers and curates extensive data on each line and presents it through a user-friendly website. A BioMart interface allows advanced searching including integrated querying with other resources e.g. Ensembl. Other resources are able to display EMMA data by accessing our Distributed Annotation System server. EMMA database access is publicly available at http://www.emmanet.org
Detection of Gene Expression in an Individual Cell Type within a Cell Mixture Using Microarray Analysis
BACKGROUND: A central issue in the design of microarray-based analysis of global gene expression is the choice between using cells of single type and a mixture of cells. This study quantified the proportion of lipopolysaccharide (LPS) induced differentially expressed monocyte genes that could be measured in peripheral blood mononuclear cells (PBMC), and determined the extent to which gene expression in the non-monocyte cell fraction diluted or obscured fold changes that could be detected in the cell mixture. METHODOLOGY/PRINCIPAL FINDINGS: Human PBMC were stimulated with LPS, and monocytes were then isolated by positive (Mono+) or negative (Mono-) selection. The non-monocyte cell fraction (MonoD) remaining after positive selection of monocytes was used to determine the effect of non-monocyte cells on overall expression. RNA from LPS-stimulated PBMC, Mono+, Mono- and MonoD samples was co-hybridised with unstimulated RNA for each cell type on oligonucleotide microarrays. There was a positive correlation in gene expression between PBMC and both Mono+ (0.77) and Mono- (0.61-0.67) samples. Analysis of individual genes that were differentially expressed in Mono+ and Mono- samples showed that the ability to detect expression of some genes was similar when analysing PBMC, but for others, differential expression was either not detected or changed in the opposite direction. As a result of the dilutional or obscuring effect of gene expression in non-monocyte cells, overall about half of the statistically significant LPS-induced changes in gene expression in monocytes were not detected in PBMC. However, 97% of genes with a four fold or greater change in expression in monocytes after LPS stimulation, and almost all (96-100%) of the top 100 most differentially expressed monocyte genes were detected in PBMC. CONCLUSIONS/SIGNIFICANCE: The effect of non-responding cells in a mixture dilutes or obscures the detection of subtle changes in gene expression in an individual cell type. However, for studies in which only the most highly differentially expressed genes are of interest, separating and analysing individual cell types may be unnecessary
Photoperiodic Modulation of Circadian Clock and Reproductive Axis Gene Expression in the Pre-Pubertal European Sea Bass Brain
The acquisition of reproductive competence requires the activation of the brain-pituitary-gonad (BPG) axis, which in most vertebrates, including fishes, is initiated by changes in photoperiod. In the European sea bass long-term exposure to continuous light (LL) alters the rhythm of reproductive hormones, delays spermatogenesis and reduces the incidence of precocious males. In contrast, an early shift from long to short photoperiod (AP) accelerates spermatogenesis. However, how photoperiod affects key genes in the brain to trigger the onset of puberty is still largely unknown. Here, we investigated if the integration of the light stimulus by clock proteins is sufficient to activate key genes that trigger the BPG axis in the European sea bass. We found that the clock genes clock, npas2, bmal1 and the BPG genes gnrh, kiss and kissr share conserved transcription factor frameworks in their promoters, suggesting co-regulation. Other gene promoters of the BGP axis were also predicted to be co-regulated by the same frameworks. Co-regulation was confirmed through gene expression analysis of brains from males exposed to LL or AP photoperiod compared to natural conditions: LL fish had suppressed gnrh1, kiss2, galr1b and esr1, while AP fish had stimulated npas2, gnrh1, gnrh2, kiss2, kiss1rb and galr1b compared to NP. It is concluded that fish exposed to different photoperiods present significant expression differences in some clock and reproductive axis related genes well before the first detectable endocrine and morphological responses of the BPG axis.European Community [222719 - LIFECYCLE]; Foundation for Science and Technology of Portugal (FCT) [SFRH/BPD/66742/2009, PEst-C/MAR/LA0015/2011]; Valencian Regional Goverment [Prometeo II/2014/051]; Spanish Ministry of Science and Innovation (MICINN) [CSD 2007-0002]info:eu-repo/semantics/publishedVersio
Computational Identification of Transcriptional Regulators in Human Endotoxemia
One of the great challenges in the post-genomic era is to decipher the underlying principles governing the dynamics of biological responses. As modulating gene expression levels is among the key regulatory responses of an organism to changes in its environment, identifying biologically relevant transcriptional regulators and their putative regulatory interactions with target genes is an essential step towards studying the complex dynamics of transcriptional regulation. We present an analysis that integrates various computational and biological aspects to explore the transcriptional regulation of systemic inflammatory responses through a human endotoxemia model. Given a high-dimensional transcriptional profiling dataset from human blood leukocytes, an elementary set of temporal dynamic responses which capture the essence of a pro-inflammatory phase, a counter-regulatory response and a dysregulation in leukocyte bioenergetics has been extracted. Upon identification of these expression patterns, fourteen inflammation-specific gene batteries that represent groups of hypothetically ‘coregulated’ genes are proposed. Subsequently, statistically significant cis-regulatory modules (CRMs) are identified and decomposed into a list of critical transcription factors (34) that are validated largely on primary literature. Finally, our analysis further allows for the construction of a dynamic representation of the temporal transcriptional regulatory program across the host, deciphering possible combinatorial interactions among factors under which they might be active. Although much remains to be explored, this study has computationally identified key transcription factors and proposed a putative time-dependent transcriptional regulatory program associated with critical transcriptional inflammatory responses. These results provide a solid foundation for future investigations to elucidate the underlying transcriptional regulatory mechanisms under the host inflammatory response. Also, the assumption that coexpressed genes that are functionally relevant are more likely to share some common transcriptional regulatory mechanism seems to be promising, making the proposed framework become essential in unravelling context-specific transcriptional regulatory interactions underlying diverse mammalian biological processes
Recommended from our members
ATF and Jun transcription factors, acting through an Ets/CRE promoter module, mediate lipopolysaccharide inducibility of the chemokine RANTES in monocytic Mono Mac 6 cells.
The chemokine RANTES is produced by a variety of tissues, including cells of the monocyte/macrophage lineage. RANTES expression is rapidly and transiently up-regulated in primary monocytes and the monocytic cell line Mono Mac 6 in response to stimulation by the bacterial product lipopolysaccharide (LPS). Transient transfection of Mono Mac 6 cells with RANTES reporter-promoter deletion constructs, in conjunction with DNase I footprinting and heterologous reporter gene assays, allowed identification of an LPS-responsive region within the RANTES promoter. Electrophoretic mobility shift assays (EMSA), methylation interference and EMSA supershift experiments were used to characterize sequences and transcription factors responsible for this LPS inducibility. The region, termed RANTES site G [R(G)], contains consensus sites for Ets and CRE/AP-1-like elements. Site-directed mutagenesis of the Ets site resulted in a loss of only 15 % of promoter activity, while mutation of the CRE/AP-1 site led to a loss of 40 % of LPS-induced promoter activity. The Ets site constitutively binds the Ets family member PU.1. LPS stimulation leads to an induction of ATF-3 and JunD factor binding to the CRE/AP-1 site. Thus, LPS induction of RANTES transcription is mediated, in part, through the activation and selective binding of ATF and Jun nuclear factors to the R(G) promoter module
Recommended from our members
ATF and Jun transcription factors, acting through an Ets/CRE promoter module, mediate lipopolysaccharide inducibility of the chemokine RANTES in monocytic Mono Mac 6 cells.
The chemokine RANTES is produced by a variety of tissues, including cells of the monocyte/macrophage lineage. RANTES expression is rapidly and transiently up-regulated in primary monocytes and the monocytic cell line Mono Mac 6 in response to stimulation by the bacterial product lipopolysaccharide (LPS). Transient transfection of Mono Mac 6 cells with RANTES reporter-promoter deletion constructs, in conjunction with DNase I footprinting and heterologous reporter gene assays, allowed identification of an LPS-responsive region within the RANTES promoter. Electrophoretic mobility shift assays (EMSA), methylation interference and EMSA supershift experiments were used to characterize sequences and transcription factors responsible for this LPS inducibility. The region, termed RANTES site G [R(G)], contains consensus sites for Ets and CRE/AP-1-like elements. Site-directed mutagenesis of the Ets site resulted in a loss of only 15 % of promoter activity, while mutation of the CRE/AP-1 site led to a loss of 40 % of LPS-induced promoter activity. The Ets site constitutively binds the Ets family member PU.1. LPS stimulation leads to an induction of ATF-3 and JunD factor binding to the CRE/AP-1 site. Thus, LPS induction of RANTES transcription is mediated, in part, through the activation and selective binding of ATF and Jun nuclear factors to the R(G) promoter module