156 research outputs found

    World-hating: apocalypse and trauma in We Need to Talk about Kevin

    Get PDF
    Lynne Ramsay’s 2011 film We Need to Talk about Kevin alternates between two narrative times, one occurring before its protagonist Eva’s son commits a terrible crime, and one after. The film invites us to read the crime as a traumatic event in Eva’s life, an event of such terrible force that it transforms Eva’s identity. This essay uses Jacob Taubes’s understanding of Gnosticism to suggest that this event does not transform who Eva is, but rather how she knows. Like a Gnostic believer, Eva comes to understanding the fundamental ontological evil of community life. Eva’s ‘trauma,’ her alienation from the world she occupies, predates Kevin’s crime, but the aftermath of that crime reveals her alienation to her. The worldview thus presented by the film casts some light on how art house films are marketed. Like many middlebrow products, art house films present marketers with the challenge of concealing the fact that the commodity they are selling is indeed a commodity. This ambivalent distrust of the marketplace is a softened repetition of the Gnostic’s anticosmism, and We Need to Talk About Kevin both performs and thematizes a displacement from the world that is primary, not contingent upon any traumatic event.http://www.mdpi.com/2076-0787/6/4/90/htmPublished versio

    Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes

    Get PDF
    A reactive transport geochemical modeling study was conducted to help predict the mineral transformations occurring over a ten year time-scale that are expected to impact soil hydraulic properties in the Biosphere 2 (B2) synthetic hillslope experiment. The modeling sought to predict the rate and extent of weathering of a granular basalt (selected for hillslope construction) as a function of climatic drivers, and to assess the feedback effects of such weathering processes on the hydraulic properties of the hillslope. Flow vectors were imported from HYDRUS into a reactive transport code, CrunchFlow2007, which was then used to model mineral weathering coupled to reactive solute transport. Associated particle size evolution was translated into changes in saturated hydraulic conductivity using Rosetta software. We found that flow characteristics, including velocity and saturation, strongly influenced the predicted extent of incongruent mineral weathering and neo-phase precipitation on the hillslope. Results were also highly sensitive to specific surface areas of the soil media, consistent with surface reaction controls on dissolution. Effects of fluid flow on weathering resulted in significant differences in the prediction of soil particle size distributions, which should feedback to alter hillslope hydraulic conductivities

    Digital Synthetic Aperture Acoustic Imaging for NDE

    Get PDF
    Real time synthetic aperture or synthetic focus techniques for acoustic imaging have been investigated and a prototype digital imaging system has been developed. It operates by exciting, with an impulse, one element from a transducer array, digitizing the return echoes, and storing them in a Random Access Memory. When this process has been repeated for all the array elements, the focus information is loaded from a mini computer. The system then generates a series of swept-focus lines, which are arranged perpendicular to the array face. Our processor handles typical input data at rates sufficient to generate real time images. As only one transducer at a time is excited it has been necessary to develop a high efficiency broadband transducer array with quarter wavelength matching layers. The array we have developed has an 11 dB return loss, a 2.7-4.3 MHz frequency range with a pulse response approximately 5 half cycles long. The digital processor operates at a 10- 16 MHz sample rate with 8 bit quantization. Theoretical and experimental images will be presented for a system with a 96 line display employing 8 and 32 active transducer elements, which has a resolution of \u3c 1 mm. We will also discuss methods of reducing the sidelobe responses in these systems. We have carried out experiments and theory, and we can considerably reduce the sidelobe level with input gain compression from the current experimental value of -12 dB to beyond -20 dB in our prototype 8 transducer system. In addition, we are investigating inverse filtering techniques for shortening the effective pulse length to 1 rf cycle to further improve the image quality and range resolution

    Direct observation of the quantum critical point in heavy fermion CeRhSi3_3

    Full text link
    We report on muon spin rotation studies of the noncentrosymmetric heavy fermion antiferromagnet CeRhSi3_3. A drastic and monotonic suppression of the internal fields, at the lowest measured temperature, was observed upon an increase of external pressure. Our data suggest that the ordered moments are gradually quenched with increasing pressure, in a manner different from the pressure dependence of the N\'eel temperature. At \unit{23.6}{kbar}, the ordered magnetic moments are fully suppressed via a second-order phase transition, and TNT_{\rm{N}} is zero. Thus, we directly observed the quantum critical point at \unit{23.6}{kbar} hidden inside the superconducting phase of CeRhSi3_3

    Influence of additional neutrons on the fusion cross-section beyond the N=8 shell

    Full text link
    Fusion enhancement for neutron-rich isotopes of oxygen on carbon nuclei was probed. To measure the fusion cross-section a 20^{20}O beam accelerated to Elab_{lab}/A=2.7 MeV bombarded the active-target detector MuSIC@Indiana with a fill gas of CH4_4. Examination of the average fusion cross-section over the interval 12 MeV \leqEc.m._{c.m.}\leq 17 MeV for 1620^{16-20}O + 12^{12}C reveals that while even isotopes of oxygen exhibit essentially the same cross-section, the cross-section for odd isotopes can be either enhanced or suppressed relative to the even A members of the isotopic chain. Theoretical models fail to explain the observed experimental results.Comment: 6 pages, 4 figure

    Comment on ‘Examining the variation of soil moisture from cosmic‑ray neutron probes footprint: experimental results from a COSMOS‑UK site’ by Howells, O.D., Petropoulos, G.P., et al., Environ Earth Sci 82, 41 (2023)

    Get PDF
    The published article by Howells et al. (2023) attempts to empirically derive the lateral footprint for a single cosmic-ray neutron sensor (CRNS), which is part of the COSMOS-UK network (Evans et al. 2016). The main result is the “true” footprint to be 50 m in radius, substantially smaller than previously published estimates. Their conclusion contradicts more than 15 peer-reviewed studies and more than a decade of research on the subject conducted by various international research groups, and thus, it would be considered as a ground-breaking finding if the methods were scientifically sound. However, the methods and arguments presented by the authors have major errors and the presented conclusions are consequently wrong

    Methodology of calculation of construction and hydrodynamic parameters of a foam layer apparatus for mass-transfer processes

    Get PDF
    Промислова реалізація методу стабілізації газорідинного шару дозволяє значно розширити галузь застосування пінних апаратів і відкриває нові можливості інтенсифікації технологічних процесів з одночасним створенням маловідходних технологій. У статті встановлені основні параметри, що впливають на гідродинаміку пінних апаратів, розглянуті основні конструкції та режими роботи пінних апаратів. Виявлено зв'язок гідродинамічних параметрів. Розглянуто гідродинамічні закономірності пінного шару. Вказані фактори, що впливають на процес масообміну, як в газовій, так і в рідкій фазах. Проведений аналіз ряду досліджень показав, що перспективним напрямком інтенсифікації процесу масообміну є розробка апаратів з трифазним псевдозрідженим шаром зрошуваної насадки складних форм із сітчастих матеріалів. Отже, необхідне проведення спеціальних досліджень гідродинамічних режимів роботи апарату з сітчастою насадкою і визначенням параметрів, що впливають на швидкість переходу насадки з одного режиму в інший.Industrial implementation of the stabilization method of the gas-liquid layer can significantly expand the field of use of foaming apparatus and opens up new opportunities for intensifying technological processes with the simultaneous creation of low-waste technologies. The article establishes the basic parameters influencing the hydrodynamics of foam apparatus, considers the basic constructions and operating modes of foam apparatus. The connection of hydrodynamic parameters is revealed. The hydrodynamic laws of the foam layer are considered. The indicated factors affecting the process of mass transfer, both in the gas and in the liquid phases. The conducted analysis of a number of studies showed that the perspective direction of intensification of the mass transfer process is the development of apparatuses with a three-phase fluidized bed of an irrigated nozzle of complex forms with mesh materials
    corecore