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Abstract Measurements of root-zone soil moisture across spatial scales of tens to thousands of meters
have been a challenge for many decades. The mobile application of Cosmic Ray Neutron Sensing (CRNS) is
a promising approach to measure field soil moisture noninvasively by surveying large regions with a
ground-based vehicle. Recently, concerns have been raised about a potentially biasing influence of local
structures and roads. We employed neutron transport simulations and dedicated experiments to quantify the
influence of different road types on the CRNSmeasurement. We found that roads introduce a substantial bias
in the CRNS estimation of field soil moisture compared to off-road scenarios. However, this effect becomes
insignificant at distances beyond a few meters from the road. Neutron measurements on the road could
overestimate the field value by up to 40% depending on road material, width, and the surrounding field
water content. The bias could be largely removed with an analytical correction function that accounts for
these parameters. Additionally, an empirical approach is proposed that can be used without prior knowledge
of field soil moisture. Tests at different study sites demonstrated good agreement between road-effect
corrected measurements and field soil moisture observations. However, if knowledge about the road
characteristics is missing, measurements on the road could substantially reduce the accuracy of this method.
Our results constitute a practical advancement of the mobile CRNS methodology, which is important for
providing unbiased estimates of field-scale soil moisture to support applications in hydrology, remote
sensing, and agriculture.

Plain Language Summary Measurements of root-zone soil moisture across spatial scales of tens to
thousands of meters have been a challenge for many decades. Themobile application of Cosmic Ray Neutron
Sensing (CRNS) is a promising approach to measure field soil moisture noninvasively by surveying large
regions with a ground-based vehicle. Recently, concerns have been raised about a potentially biasing
influence of roads. We employed physics simulations and dedicated experiments to quantify the influence of
different road types on the CRNS measurement. We found that the presence of roads biased the CRNS
estimation of field soil moisture compared to nonroad scenarios. Neutron measurements could overestimate
the field value by up to 40% depending on road material, width, surrounding field water content, and
distance from the road. We proposed a correction function that successfully removed this bias andworks even
without prior knowledge of field soil moisture. Tests at different study sites demonstrated good agreement
between correctedmeasurements and other field soil moisture observations. Our results constitute a practical
advancement of the mobile CRNS methodology, which is important for providing unbiased estimates of
field-scale soil moisture to support applications in hydrology, remote sensing, and agriculture.

1. Introduction

Themonitoring of storage, movement, and quality of water at regional and global scales is of vital importance
for practical applications such as agricultural production, water resources management, and predictions of
hydrological extremes like floods and droughts (Seneviratne et al., 2010; Wood et al., 2011; Zink et al.,
2016). To study land surface processes, soil moisture information is required at a scale relevant and represen-
tative of the physical, chemical, or biological processes of interest (Corwin et al., 2006; Entekhabi et al., 1999;
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Gentine et al., 2012; Schulz et al., 2006; Vereecken et al., 2015). One of the grand challenges in soil moisture
monitoring is the provision of parameters which describe these critical processes at the landscape scale and
which represent the natural heterogeneity of the soil-hydrological system at scales of 1–1,000 m (Peters-
Lidard et al., 2017; Robinson et al., 2008).

Over the last 10–15 years, satellite-based Earth observation technologies have made enormous progress
toward mapping of soil moisture patterns at the catchment scale (Famiglietti et al., 2008; Kerr, 2007; Liu
et al., 2011; Ochsner et al., 2013; Wagner et al., 2009; Wang & Qu, 2009). While such data are widely used today
to calibrate large-scale hydrological models (Bates, 2012; Silvestro et al., 2015), its information content is often
not appropriate to reveal processes at the intermediate scale up to 1,000 m (Western et al., 2002). The main
shortcomings are the coarse spatial resolution, shallow measurement depth, and disturbing influences of
vegetation and surface roughness (Robinson et al., 2008). In contrast to ground-based methods, atmospheric
effects and geolocation introduce further uncertainty to remotely sensed products. When comparing the
large spatiotemporal coverage of remote-sensing data against scales covered by local instruments (e.g.,
time-domain reflectometry, gravimetry, electromagnetic induction, gamma rays, and nuclear magnetic reso-
nance; see Bogena et al., 2015), it becomes obvious that “there is currently a gap in our ability to routinely
measure soil moisture at intermediate scales” (Robinson et al., 2008).

The method of Cosmic Ray Neutron Sensing (CRNS) for soil moisture estimation, introduced to the envir-
onmental science community by Zreda et al. (2008), provides a much larger measurement footprint than
any other ground-based local method. With a support volume in the order of 104 m3 (>100 m radius,
<0.8 m depth; Köhli et al., 2015), CRNS has the potential to close the scale gap between point measure-
ments of root-zone soil moisture and remotely sensed surface soil moisture (Montzka et al., 2017;
Ochsner et al., 2013). The CRNS technology makes use of the extraordinarily high sensitivity of cosmic-
ray neutrons to hydrogen nuclei and measures the concentration of epithermal neutrons above the soil
surface. Since its introduction, the CRNS technology has quickly established itself in the field of hydrologi-
cal observations (Andreasen et al., 2017) and is now used for soil moisture monitoring by many research
groups worldwide (e.g., Bogena et al., 2013; Franz et al., 2013a; Peterson et al., 2016; Schrön et al., 2017;
Zhu et al., 2016).

Pilot studies have shown the concept and potential ofmobile CRNS (Desilets et al., 2010) using neutron detec-
tors mounted on a ground-based vehicle (“rover”). The method is comparable to exploration missions with
rovers on the Martian surface (Jun et al., 2013). Following advances on the understanding of stationary
CRNS probes, recent studies have more and more elaborated on direct applications of the so-called CRNS
rover (Avery et al., 2016; Chrisman & Zreda, 2013; Dong et al., 2014; Franz et al., 2015; McJannet et al., 2014,
2017). While the “classical,” stationary CRNS application enables one to capture the hourly variability of soil
moisture within a static footprint, the mobile application is intended to capture the spatial variability of soil
moisture across larger areas or along large transects. The CRNS rover uses the same detection principle as the
stationary CRNS probes but deploys multiple and larger neutron detectors in order to achieve higher count
rates at much shorter recording periods.

Cultivated fields, forests, mountainous terrain, and private land are often not accessible by vehicles.
Hence, the CRNS rover is usually moved along a network of existing roads, streets, and pathways in a
study region. This strategy is also practical when the rover is used to cover large areas at the regional
scale in a short period of time. However, recent neutron simulations by Köhli et al. (2015) showed that
the stationary CRNS detector is particularly sensitive to the first few meters around the sensor. This was
later confirmed by calibration and validation campaigns of stationary CRNS probes (Heidbüchel et al.,
2016; Schattan et al., 2017; Schrön et al., 2017). This aspect is of high importance for the mobile applica-
tion of CRNS. As a result of this local sensitivity, we hypothesize that the CRNS measurement is biased
significantly when the moisture conditions present in the road differ substantially from the actual field
of interest.

The effect of dry structures in the footprint was introduced for the first time by Franz et al. (2013a) and was
also observed by Chrisman and Zreda (2013) and Schrön et al. (2018) on rover surveys through urban areas.
Franz et al. (2015) sensed soil moisture of agricultural fields by roving on paved and gravel roads, and specu-
lated that the road material could have introduced a dry bias to their measurements. It is critical to prove
and quantify such an effect, not only for the advancement of the CRNS roving method, but also for its
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application in agricultural irrigation management (Franz et al., 2015), for large-scale soil moisture retrieval to
support hydrological modeling (Schrön, 2017; Zink et al., 2016), and for the evaluation of remote-sensing
products (Montzka et al., 2017).

In the present study, we aim to evaluate and quantify the “road effect” by combining physical neutron trans-
port modeling and dedicated field experiments. Based on theoretical investigations, we propose a universal
correction function which is then tested and discussed in the light of ten rover campaigns in Central Germany
and South England.

2. Methods
2.1. The Cosmic Ray Neutron Rover

The neutron background density in air is mainly controlled by the interaction of direct cosmic radiation
with the ground and by the number of hydrogen atoms in the environment (Köhli et al., 2015; Zreda
et al., 2008). As hydrogen is an elemental part of the water molecule, the correlation between the epither-
mal neutron signal and surrounding water storages can be beneficial for the monitoring of the
hydrological cycle.

The cosmic ray neutron sensor makes use of thermal neutron detectors filled with helium-3 or boron trifluor-
ide (Persons & Aloise, 2011; Schrön et al., 2018), manufactured by Hydroinnova LLC (Albuquerque, USA). A
surrounding shield of polyethylene prevents most thermal neutrons in the natural radiation environment
from entering the detector, while it slows down incoming, epithermal neutrons to detectable, thermal
energies (Andreasen et al., 2016; Zreda et al., 2012; Köhli et al., 2018). Figure 1 shows a combination of the
helium-3 detector system (white case, left), a small helium-3 unit (black case, middle), and four boron
trifluoride tubes (right) which were disassembled from stationary probes.

The mobile CRNS detectors can be mounted in the trunk of a car. As neutrons are almost exclusively sensitive
to hydrogen, the metallic material of the car appears almost transparent. Additional plastic components and
human presence can result in a constant shielding factor, which is irrelevant for CRNS applications as only
relative changes of neutrons are evaluated. Air temperature and humidity are recorded with sensors
mounted externally to the car, because air conditions inside and outside can differ significantly. The neutron
detector was set to integrate neutron counts over 1 minute. When in motion, this implicitly stretches the
otherwise circular footprint to a patch elongated in the driving direction. In contrast, the GPS coordinates
are read from a Globalsat BR-355 sensor at the time of recording, so after the neutron counts were integrated.
To account for this artificial shift in postprocessing mode, the UTM coordinates of each signal were back-
projected to half of the distance covered within that minute. Driving speed was adapted to local conditions
and ranged from 15 to 80 m/min. The neutron count rate N depends on environmental moisture conditions
and on the detector volume used. The helium-3 detector system observed 90–170 counts per minute (cpm)
and showed a similar count rate as the sum of four boron trifluoride tubes. Three consecutive measurements
(i.e., 3 min) underwent a moving-average filter to account for the moving footprint and to reduce the relative

statistical uncertainty,
ffiffiffiffi

N
p

=N, by a factor of
ffiffiffi

3
p

≈1:73.

Figure 1. (left) Components of the CRNS rover system used in Germany, comprising two helium-3 gas tubes, external
humidity and temperature sensors, a GPS unit, and the datalogger box including a battery. (right) A combination of
detectors used in England, composed of the helium-3 system (white case), a small helium-3 unit (black case), and four
boron trifluoride detectors (white tubes) which were disassembled from stationary probes.
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In order to obtain a proxy for near-surface water content, the detected neutron radiation needs to be cor-
rected for the incoming variation of cosmic rays, for the air mass above the sensor, and for water vapor in
the air (Schrön et al., 2015). In this work, we applied standard correction procedures (Hawdon et al., 2014;
Rosolem et al., 2013; Zreda et al., 2012) in order to obtain a processed neutron count rate N.

To convert the neutron count rate to gravimetric soil water equivalent, θgrv, several approaches have been
proposed in literature. Desilets et al. (2010) suggested a theoretical relation that has been applied successfully
by themajority of CRNS studies in the past. McJannet et al. (2014) found that this approach performs also bet-
ter for rover campaigns than the universal calibration function proposed by Franz et al. (2013b), as the exact
determination of soil and land use data is the major obstacle to apply the latter. The standard approach from
Desilets et al. (2010) is as follows:

θgrvðN;N0Þ¼ a0
N=N0 � a1

� a2 ; (1)

where parametersai¼f0:0808; 0:372; 0:115gwere determined using neutron physics simulations, and N0 is a
(site-specific) calibration parameter. The latter is determined once for each data set by comparing the CRNS
soil moisture product with the actual soil moisture conditions in the field. However, neutrons are sensitive to
all occurances of hydrogen in the footprint, such as ponds, organic material, lattice water, plant water, and
other dynamic contributors. Hence, the variable θgrvðN;N0Þ¼θsmþθoffset denotes the sum of the soil water
equivalent and an offset introduced by additional hydrogen pools. Furthermore, to compare CRNS products
with other point sensors, the gravimetric water content is converted to volumetric water content, θvol¼θgrv·
ϱbd, using soil bulk density information ϱbd. In this work, we define

θðNÞ¼ϱbd ðθgrvðN;N0Þ � θoffsetÞ (2)

as the CRNS soil moisture product, given in units of volumetric percent (%) throughout this manuscript.

To account for spatially variable parameters of soil bulk density and land use throughout the study area, addi-
tional sources of data were incorporated by recent studies (Avery et al., 2016; McJannet et al., 2017; Schrön,
2017). However, spatial information at the field scale (1–100 m) is often not available or comes with signifi-
cant uncertainty. This can be considered a general handicap of the mobile CRNS method. In this work, we
decided to apply the standard approach using spatially constant parameters, because (1) the selected study
sites have sufficiently homogeneous soil and land use conditions and (2) the focus of the present study is to
quantify the local effect of roads to the relative neutron signal, rather than the exact estimation of absolute
soil moisture.

2.2. Simulation of Neutron Interactions With Road Structures

Theoretical calculations of the CRNS footprint by Köhli et al. (2015) have shown that the radial sensitivity of a
CRNS detector is strongly influenced by the first few meters around the sensor (see also Schrön et al., 2017).
Therefore, we hypothesized that nearby road material influences the neutron signal N, which differs from the
signal Nfield measured above the soil in the absence of a road. In this regard, we define the bias N=Nfield≠1
describing the relative deviation of measured neutrons N on the road from measurements on the field,
Nfield, if the moisture contents of road and soil differ.

Many mobile surveys rely on road-only measurements of cosmic-ray neutrons. It can be expected that a
potential road effect is larger when differences between road moisture and surrounding field water content
are larger. It is highly impractical to measure the corresponding bias rigorously, as it might depend also on
the road material (see above), on field soil moisture, and on the distance to the road. We therefore employed
the Monte-Carlo technique using the neutron transport code URANOS (Köhli et al., 2015; www.ufz.de/uranos)
to simulate the response of 102 to 104 eV neutrons to a domain of 25 ha which is crossed by a straight road
geometry (see Figure 2).

The road is modeled as a 20 cm deep layer of either stone or asphalt, while the soil below was set to 5% volu-
metric water content. Following the compendium of material composition data (McConn et al., 2011), asphalt
pavement is modeled as a mixture of O, H, C, and Si, with an effective density of 2:58 g=cm3, which corre-
sponds to a soil water equivalent of θroad≈12%. Stone/gravel is a mixture of Si, O, and Al, plus 3% volumetric
water content at a total density of 1:4 g=cm3 (Köhli et al., 2015). The wetness of the surrounding soil, θfield, has
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been set homogeneously to 10, 20, 30, and 40% volumetric water content. The neutron response to roads
was simulated for road widths of 3, 5, and 7 m.

2.3. Validation With Point-Scale Measurements

Since the footprint of the CRNS signal covers an area of several hectares, comparison with point data is a chal-
lenge. To bridge this scale gap, Schrön et al. (2017) developed a procedure to calculate a weighted average of
point samples, based on their distance and depth from the neutron detector. The method uses an advanced
spatial sensitivity function based on neutron transport simulations by Köhli et al. (2015) and was successfully
applied to calibration and validation data sets for stationary CRNS probes.

In our work presented here, we employed independent validation measurements of field moisture in the
upper soil layer using occasional soil samples, and high frequency electromagnetic measurements with
TDR100 (Campbell Scientific Ltd., Germany) and Theta Probes (Delta-T Devices, UK). Both instruments are
standard approaches to determine soil permittivity which can then be converted to volumetric soil moisture
(Roth et al., 1990). The Theta Probe measures soil system impedance at 100 MHz in the upper 6 cm, while the
TDR100 evaluates pulse travel time in the GHz-range in the upper 10 cm (see also Blonquist et al., 2005; Vaz
et al., 2013). The TDR100 has been redesigned for use in mobile field campaigns (Schröter et al., 2015). All
instruments were individually calibrated using reference media with known dielectric properties (Kögler
et al., 2013).

In order to compare the point measurements with the CRNS soil moisture product, a weighted average of the
point data was applied based on their individual distance r to the neutron detector (see illustration circle in
Figure 3). Using equations (1) and (2), the calibration parameter N0 can be determined from the neutron
count rate N and the independently measured value for average field soil moisture, hθi. The soil moisture pro-
ducts were interpolated using an Ordinary Kriging approach, as the chosen measurement density adequately
represents typical spatial correlation lengths of soil moisture at our study sites. The consistency between
interpolated road and field data was assessed by probability density functions (PDFs) and scatterplots (see
supporting information) of the soil moisture products. Since both data sets cover different spatial areas, only
data from the overlapping areas (intersection) were included in the histogram analysis.

2.4. Experimental Setup
2.4.1. Road Types
Road moisture content is typically unknown and can only be determined by destructive sampling and lab
analysis, or expensive geophysical exploration (Benedetto et al., 2012; Saarenketo & Scullion, 2000). In the
scope of the uncertainties involved in roving neutron sensing, e.g., due to spatial heterogeneity of roads
and surrounding land use, visual determination of the road material, guided by literature information, can

Figure 2. (a) Schematic of the model setup used by the Monte-Carlo code URANOS to simulate the response of cosmic ray
neutrons to groundmaterials. (b) Exemplary URANOSmodel output showing a birds-eye view of the neutron density in the
horizontal detector layer for a 5 m stoney road and 50% field soil moisture.
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allow for an adequate estimate of its elemental composition and thus, its soil water equivalent. Chrisman and
Zreda (2013) analyzed several samples of stone/concrete and asphalt in Arizona and found their gravimetric
water equivalent to be 1.52% and 5.10%, respectively, including lattice water. Following literature values for
typical material densities from 1:8 g=cm3 (sandy concrete) to 2:4 g=cm3 (hot asphalt; Houben, 1994; Stroup-
Gardiner & Brown, 2000), the volumetric water equivalent then is ≈3% and ≈12%, respectively. As stone and
asphalt are known as one of the most “dry” and “wet” road materials, respectively, we assumed the moisture
content of the various road types in our study sites (Figure 3) to be within this range of extremes.
2.4.2. Schäfertal (Germany, Experiment A)
The Schäfertal site is a headwater catchment in the Lower Harz Mountains and one of the intensivemonitoring
sites in the TERENO Harz/Central German Lowland Observatory (51°390N, 11°30E; Wollschläger et al., 2016;
Zacharias et al., 2011). The catchment covers an area of 1.66 km2 and is predominantly under agricultural
management. In the riparian zone at the valley bottom, grassland surrounds the creek Schäferbach. Grassland
is also present at the outlet of the catchment and a forest occupies a small area at the north-eastern end

Figure 3. The study sites (top right) Schäfertal and (bottom right) Sheepdrove Organic Farm. White borders indicate the
areas of three different field experiments A–C. Black lines indicate the type of road. The central circle with TDR points
(red) and rover points (blue) illustrates the spatial calibration of the CRNS rover by comparing the large-scale neutron
counts with point-scale soil moisture, using a weighted average of point samples based on their distance r to the rover.
Pictures at certain spots: Schäfertal gravel/sand road (P1) and valley (P2), the Sheepdrove Farm valley (P3), Sheepdrove
gravel/stone road (P4), and asphalt/stone road close-up (P5).
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of the catchment outlet. Average bulk density of the soil is hϱbdi¼1:55 g=cm3 and water equivalent of addi-
tional hydrogen and organic pools have been approximated to behθoffseti¼2:3% in themainly homogeneous
bare field. Porosity and organic content are higher in the riparian zone. For more information about the local
hydrology, see Martini et al. (2015) and Schröter et al. (2015).

Within the Schäfertal, Schröter et al. (2015, 2017) performed regular TDR campaigns by foot using 94 loca-
tions in the whole catchment area. During several campaigns from 2014 to 2016, the CRNS rover accompa-
nied their team. Shortly after harvest the fields were accessible with the car, such that the same regions
could be sampled with the rover and the TDR team on the same campaign day. On some days, however,
the vehicle was not allowed to access the fields due to agricultural activities and seeded vegetation, such
that CRNS measurements were taken only on the sandy roads which cross the agricultural fields and the
creek.

The road network consists mainly of three types: a pavedmajor road between the hilltops and the urban area,
sandy roads within the catchment, and pathways along the creek. The paved road has an average width of
3.5 m and consists of a very dry stone/concrete mixture with an estimated 4% volumetric water equivalent.
The secondary roads are a mixture of stone, sand, and gravel, with 6%moisture and 3mwidth. The pathways
are 3mwide and contain mixedmaterial from gravel, soil, and grass and have an estimated averagemoisture
content of 10%.

Rover measurements were taken using the helium-3 detector system at count rates of approximately 90–170
cpm, depending on wetness conditions. The corresponding neutron count uncertainties of 6–4%
propagated through equation (1) to absolute uncertainties in water equivalent,Δθgrv, of 10.0–0.9 gravimetric
percent, for wet to dry conditions, respectively.
2.4.3. Sheepdrove Organic Farm (England, Experiments B and C)
The Sheepdrove Organic Farm is located on the West Berkshire Downs in the Lambourn catchment in South
England (51°320N, 1°290W). The farm is located in a dry valley characterized by a highly permeable white chalk
aquifer (Evans et al., 2016). Soil samples at the farm were collected at three fields with slightly different
soil/vegetation characteristics between 2015 and 2017. The soil has a loamy clay texture with many flints
and pieces of chalk, average bulk density is hϱbdi¼1:25 g=cm3 and water equivalent of additional hydrogen
and organic pools have been determined to be hθoffseti¼4:3% with insignificant differences between the
fields.

The road network consists of a paved major road (width 3 m) made of an asphalt/stone mixture with an esti-
mated moisture equivalent of 11%. The main side roads are made of a gravel/stone mixture (7%), most of
which are 2.3 m wide, while the southern road is 4.5 m wide. Many nonsealed tracks (width 3 m) follow
the borders between fields which partly consist of sand, grass, and organic material, such that their average
moisture equivalent was estimated to 12%.

Rover measurements were taken using the combination of the helium-3 detector system and the four boron
trifluoride tubes at total count rates of approximately 180–330 cpm depending on wetness conditions. The
corresponding neutron count uncertainties of 4–3% propagated through equation (1) to absolute uncertain-
ties in water equivalent Δθgrv of 7.5–0.6 gravimetric percent, for wet to dry conditions, respectively.

3. Results and Discussions
3.1. Theoretical Investigations

Spatial Monte-Carlo simulations were performed to study the interactions of cosmic ray neutrons with roads
of various widths, materials, and homogeneous field soil moisture conditions. The term “relative road bias”
denotes the ratio of neutron intensity N detected in a road scenario (see Figure 2) over neutron intensity
Nfield detected in a scenario with a homogeneous soil moisture distribution.

Symbols in Figure 4 show the simulated road bias for a detector placed at the center of the road. The bias
increases with increasing field soil moisture, increasing road width, and decreasing road moisture. The
quantity is particularly sensitive to the water equivalent of the pavement (θroad) and the soil (θfield). Figure 5
plots the simulated road bias over distance from the road center, showing that the bias is a short-range effect
that decreases a few meters away from the road, so that almost no measurable effect can be expected
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beyond ≈10 m distance. It is evident from these simulations that the road
bias is higher the larger the difference between road moisture and sur-
rounding soil moisture, and the wider the road.

We suggest to correct the observed neutron intensity with a correction
factor Croad , similar to the approaches used to correct for meteorological
(Hawdon et al., 2014; Schrön et al., 2015) and biomass effects (Baatz
et al., 2015):

Ncorr¼N=Croad ; (3)

where the correction factor should be 1 for no-road conditions, plus a pro-
duct of terms that depend on the characteristics of the road and field con-
ditions. The shape of each term of the proposed correction function is
based on physical reasoning as follows:

1. The dependence on road width w is assumed to be a simple exponen-
tial, since the short-range dependency of neutron intensity on distance
is exponential as shown by Köhli et al. (2015).

2. The dependence on water content (θroad and θfield ) is assumed to be
hyperbolic, since the natural response of neutrons to soil water exhibits
a hyperbolic shape, as was derived from basic principles by Desilets
et al. (2010) and Schrön (2017). This form (e.g., equation (1)) has been
proven to be robust among all studies related to CRNS so far.

3. The dependence on distance r from the road center is assumed to be a sum of exponentials, since the
combination of short-range and long-range neutrons indicate this relationship (see Köhli et al., 2015).
An additional polynomial term (wa rb) might be necessary to account for the plateau introduced by the
road of a certain width w.

4. Additionally, we demand that the total correction factor is 1 for road widths w= 0 as well as for similar
moisture conditions in the road and in the field (θroad¼θfield ). The dependency on distance should be
further normalized to 1 at the road center (r= 0).

The semianalytical approach was fitted to the URANOS simulation results. A minimum of 10 numerical para-
meters were required in order to adequately capture the most prominent features and dependencies of the
simulated neutron response:

Croadðθfield; θroad;w; rÞ¼1þF1ðwÞ · F2ðθfield; θroadÞ · F3ðr;wÞ ; (4)

where

F1ðwÞ ¼p0 ð1� e�p1wÞ ;
F2ðθfield; θroadÞ ¼ðθfield � θroadÞ p2 � p3 θroad

θfield � p4 θroadþp5
;

F3ðr;wÞ ¼p6 e
�p7w

�p8 r4þð1� p6Þ e�p9r :

(5)

Figure 4. URANOS simulations (symbols) and fitted correction functions
Croadðθfield; θroad;w; rÞ (lines) representing the neutron bias on roads of var-
ious widths through fields of different soil moisture. Shown for stone roads
(grey) and asphalt roads (black). The quality of fit is in the range of ±0.01
except for rare cases with θfield < θroad.

Table 1
Parameters pi of the Parameter Functions Fj Describing the Road Correction Factor Croad (equation (5)), Namely the Geometry
Term F1, the Moisture Term F2, the Distance Term F3, and the Alternative Moisture Term F20 That Does Not Require Prior
Information About Field Soil Moisture (equation (6))

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

F1 0.42 0.50
F2 1.11 4.11 1.78 0.30
F3 0.94 1.10 2.70 0.01
F

0
2 1.06 4.00 0.16 0.39
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Parameters pi of the geometry term F1, the moisture term F2, and the distance term F3 are given in Table 1.

Variablesθfield andθroad are given in units ofm3=m3, road widthw and distance r are in units of m. The function
is defined for road moisture values in the range of 1 ≤ θroad ≤ 16%.

The function fits well to the simulation results for different distances r from the road center (Figure 5), and for
different θfield; θroad, and widths w (Figure 4). However, the performance of the analytical approach is poorer
for road widths of 7 m and beyond (not shown). As the contribution of nonfield neutrons increases with road
width, it is generelly not recommended to conduct surveys of field soil moisture on wide roads (compare also
Schrön et al., 2017, Figure 11a). The approach also overestimates the absolute bias when the field soil moist-
ure is lower than the road moisture. These rather unusual scenarios should be avoided when the function is
applied to roving data sets in the future. Since simulation results have indicated that the influence of slightly
wetter road material is insignificant, a redefinition of the form F2ðθroad > θfieldÞ¼1 could be a sufficient
approximation for these rare cases.

It is important to note that the moisture term F2 depends on prior knowledge of the field soil moisture θfield.
The analysis of the field experiments in this work will investigate whether the moisture term can be replaced
by a first-order approximation without prior knowledge.

3.2. Experiment A: Estimating Field Soil Moisture With TDR and the Rover

Our first field experiment was designed to test the capabilities of the cosmic ray neutron rover to capture
small-scale patterns of soil moisture. During campaigns in the Schäfertal, the rover was moved across the

Figure 5. URANOS simulations (circles) and fitted correction functions Croadðθfield; θroad;w; rÞ (lines) representing the
neutron bias at different distances r from the road center (r = 0) for various road widths w (geometry shaded), field soil
moisture (color), and (a) stone road material and (b) asphalt road material. Field conditions that are dryer than the road
moisture (red in Figure 5b) cannot be represented by the analytical approach.
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fields over the course of 4–6 h. At the rate of one data point per minute, the technology allowed collection of
more than 200–400 data points in the catchment, which is an adequate number to justify ordinary kriging

within the 1:66 km2 area.

Figure 6 shows the highly resolved CRNS soil moisture product which reveals hydrological features in the
catchment, such as dry hilltops, or contact springs in the valley near the creek due to shallow groundwater.
Since the data were not corrected for biomass water, a probable influence of vegetation can be seen near the
grove in the north-eastern part of the catchment, and possibly also near the hedgerow (south-western part).
While the experiment focused on the agricultural areas of the harvested field and thus surveyed across the
field and along its borders, a few roads were touched briefly at the southern and north-western hilltops,
where the soil appears to be slightly drier.

Figure 7 summarizes results from this and other field surveys in the Schäfertal that were conducted together
with a team using handheld TDR devices. Using 94 TDR samples and more than 300 rover points in
experiment A1, it was possible to find a calibration factor N0=10,447 cph (equation (1)) that explained all six
subexperiments in the catchment area. In August 2015 (Figures 7a and 7b), all the fields of the Schäfertal site
were accessible with the car, however, TDR campaigns were incomplete due to technical issues. In the summer
of 2014 (Figures 7c and 7d), only the northern fields could be surveyed due to agricultural activities in the
southern area. For all of the first four campaign days, Figures 7a–7d, a good agreement between the rover
and the TDR products in representing patterns and mean soil moisture in the Schäfertal was achieved.
Besides the visual impression in columns 1 and 2, the probability density functions (PDFs) of their overlapping
area (third column) confirm emphatically that the main soil moisture patterns were well captured by both
methods. An additional perspective on the data is provided by scatterplots in the supporting information.

The two approaches appear to show remarkable agreement, despite the fact the two data sets were techni-
cally different. First, the penetration depths of both methods were different, TDR measured in the upper 10
cm of the soil, while CRNS integrated down to 20–50 cm, though with highest sensitivity to the upper 10 cm
(Schrön et al., 2017). Second, TDR data was too sparse to achieve a comparable interpolation quality, espe-
cially on days when less than a few tens of data points were available (Webster & Oliver, 1992). Third, spatially
constant parameters, N0, ϱbd, θoffset, were used for the conversion from neutrons to soil moisture (equations
(1) and (2)). In strong contrast, rover measurements at the last two survey days, Figures 7e and 7f, show a poor

Figure 6. Soil moisture estimation by the CRNS rover in the Schäfertal agricultural field. Data were interpolated from points (black cross) which represent the central
location of the path travelled by the rover within the one minute acquisition time. Actual hydrological features like contact springs in the valley and dry hilltops are
evident, but other influences of the grove, the hedgerow, and roads (see also Figure 3) may distort the derived soil moisture values, indicating challenges of
the method.
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Figure 7. Comparison of CRNS Rover and TDR campaigns in the Schäfertal using interpolated data, and the probability density functions (PDF) of soil moisture in
their overlapping area. See also the corresponding scatterplots in the supporting information.
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agreement to field soil moisture measured by TDR. At those days, the CRNS rover had no access to the field
and only crossed nearby roads and pathways. The corresponding impact on data interpretation is discussed
in section 3.3.

The field campaigns highlight characteristic hydrological features, e.g., the mentioned contact springs near
the creek, that are especially prominent during dry periods and were identified also by other researchers
using conventional measurement techniques (Graeff et al., 2009; Schröter et al., 2015). The experiment
shows that the rover can efficiently contribute to hydrological process understanding, while the assumption
of spatially constant parameters is considered acceptable for the relatively homogeneous Schäfertal site.

3.3. Taking the Road Effect Into Account

In May 2014 and December 2015, the fields were cultivated and the CRNS rover surveys were restricted to the
roads. Those campaigns are shown in Figures 7e and 7f, where the effect of the dry road is clearly visible in all
plots. This result indicates that measurements from the road are biased and therefore not representative for
field soil moisture. Under wet conditions, the probability density function (PDF) of soil moisture does not
reflect the field conditions (Figure 7e), while under dry conditions there seems to be a simple bias of the his-
togram toward the dry end (Figure 7f).

The presented road-effect correction approach promises to account for this behavior, as it scales with the dif-
ference between road and field moisture, using information of the different types of roads crossing the catch-
ment (Figure 3). The correction function Croad was applied using prior knowledge about the mean field soil
moisture (equation (5)). The use of θfield¼hθTDRi led to better agreement between the rover and the TDR data
for both days as shown in Figure 8 (black histograms).

However, in most cases independent measurements of field soil moisture θfield are not available. As an
alternative, the first-order approximation of soil moisture, θðNÞ, using the uncorrected neutron count rate N,

Figure 8. Application of the road correction approach on the road-only surveys in the Schäfertal (compare Figures 7e and
7f). Patterns of (left) the rover agree well with those from (middle) TDR in terms of (right) the probability density function in
the overlap area of both interpolated grids, their mean, and standard deviation. The correction is tested with two
approaches of the moisture term: (1) F2ðθfield¼hθTDRiÞ (equation (5)) using the average of the TDR data (black line) and
(2) F20 ðθðNÞÞ (equation (6)) using uncorrected neutron counts as a proxy (blue line). Kriging results using the former
approach were almost identical to those using the latter approach, so that only the latter is shown in the left plot.
Corresponding scatterplots are presented in the supporting information.
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could be used as a proxy to estimate the bias due to the difference in soil moisture between road and field. An
alternative analytical approach for the moisture term F2 (equation (5)) is proposed here that essentially
accounts for the mismatch between θðNÞ and θfield:

F20 ðθðNÞ; θroadÞ≈p2 � p3 θroad �
p4þθroad
p5þθðNÞ : (6)

The updated empirical parameters p2–5 (Table 1) were determined based on the data sets of the Schäfertal
and another, independent experiment in the context of an interdisciplinary research project which included
rover measurements across different land use types (Scale X, see also Wolf et al. (2016), data not shown here).
Although the approach is empirical, the preliminary tests at four different sites in the UK and Germany indi-
cate that the method might be transferable. The corresponding probability distribution is indicated by the
blue line in Figure 8, showing that the two approaches led to almost identical results.

3.4. Experiment B: Road Influence at a Distance

The experiments at the Sheepdrove Farm aimed to compare the soil moisture patterns of the road and the
field, by surveying both compartments with the rover and excluding one of them during the analysis. The
general objective of these experiments was to clarify whether the road correction function can be used to
transfer the apparent soil moisture patterns seen from the road to values that were taken in the actual field.

The road network across the farm is an ideal location to test the road-effect correction, due to its wide range
of road materials (gravel to asphalt) and road widths (2.3–4.5 m). To improve the accuracy of the rover mea-
surements, the count rate was increased by combining multiple neutron detectors. Each of the rover data
sets (experiments B and C) were compared to a stationary, well-calibrated CRNS probe and to occasional
Theta Probe measurements (not shown), in order to find a universal calibration parameter N0=11,300 cph
(see also equation (1)) for all data sets.

In order to rigorously test the theoretically predicted dependency of the road bias on the road moisture θroad
and the distance r to the road center, a dedicated experiment was performed at the north-west corner of the
Sheepdrove Farm (Figure 9a). A gravel/stone road (north) and an asphalt/stone road (south) are aligned
almost linearly and meet centrally at a junction. The road moisture reflects the mixture of present road
materials and was estimated to be ≈11 for the asphalt/stone mix, and ≈7% for the gravel/stone mix.

The rover measured neutrons along parallel lines in various distances from the road. For each track, the cor-
responding mean and standard deviation were calculated, which represent mainly the heterogeneity of soil
and vegetation along each of the 400 m tracks. Figure 9b shows how the influence of the road decreases the
apparent field soil moisture as measured by the rover (left). Upon application of the road correction function,
measurements converge to similar values for all distances (right) and reveal different soil moisture conditions
for the nothern and southern fields. The apparent increase at r= 12 m is likely caused by hydrogen present in
the hedgerow and the nearby grove. The overall result provides evidence that the analytical correction
function properly represents the road bias at different distances and for different materials.

3.5. Experiment C: Patterns Across Roads and Fields

On three different campaign days, the roads and the surrounding fields in the central valley of the Sheepdrove
Farm were surveyed with the CRNS rover. Road points were corrected using equations (4) and (6) based on
the road types shown in Figure 3. The corresponding soil moisture maps and histograms (PDFs) are shown
in Figure 10, where the three campaign days are denoted as C1–C3.

In experiment C1, it was only possible to access the borders of the field (r¼10±5 m) due to farming activities.
Nevertheless, the correction of the road data set led to adequate improvement of the average soil moisture
distribution (Figure 10). However, some patterns were not adequately resolved by the road survey. According
to the field measurements, the central northern field was wetter than the central southern field. From mea-
surements on the road, only an average water content was seen with no distinction between the two fields.
There were also discrepancies in the eastern part of the farm, where road and field patterns seemed to be
inverse. It can be speculated that one reason for this behavior is the influence of the south-eastern field,
which was not surveyed on that day. The dry spot at the north-west corner is due to buildings and a large
concrete area, which were not accounted for in the correction procedure.
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In experiment C2, it was possible to fully cross the fields to generate an adequate interpolation of field soil
moisture. The correction of all road types appeared to agree very well with the overall pattern of the field
measurements (Figure 10). The probability density functions show good agreement in the overlapping area
of both data sets (i.e., near the road).

The road correction in experiment C3 was also able to capture the patterns seen by the field survey, with the
exception of the wet region in the northern part. It is speculative whether oversaturated road material, tempor-
ary ponds on the road, or local vegetation influenced the data collected by the rover. This pathway is lowered by
1–2 m compared to the field, however, the potential influence of the local terrain features on the CRNS perfor-
mancewas not quantified in the scope of this study. Additional vegetation correction could probably reduce the
apparent soil moisture in this part, which is surrounded by unmanaged grass and hedges. In any case, low pre-
cipitation (drizzle) might have added interception water during this day, which is almost impossible to quantify.

All in all, the consistency between road and field measurements was improved by the application of the road
correction approach in terms of mean, standard deviation, and root-mean-square error (see also supporting
information). Some of the patterns in the field were invisible from the road, especially when significant differ-
ences in soil moisture were present between neighboring fields passed by the rover. In these cases, it is not
possible for the sensor to capture the corresponding patterns due to the isotropic nature of neutron detec-
tion. Moreover, local ponds on pathways or nearby unmanaged vegetation could further influence the neu-
tron signal in a way that is not representative for the field. These structures often contain or intercept water
that can act as a shield for neutrons from the field behind.

Figure 9. Experiment B at the Sheepdrove Farm. (a) Parallel tracks (dashed) at different distances from two roads of different materials that meet at the junction (x = 0,
y = 0). (b) (left) The influence of the road decreases the apparent field soil moisture measured by the rover. (right) After application of the road correction function,
measurements converge to similar values for all distances and reveal different soil moisture conditions for the nothern and southern fields. Error bars indicate
the heterogeneity of water content along the 400 m track length.
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3.6. Tradeoff Between Measurements From the Road and the Field

Although it is evident that neutron measurements on the road can be biased substantially, it remains a chal-
lenge for experimentalists to access nonroad areas, because either the access of fields is restricted or cam-
paigns are required to cover large areas in a reasonable amount of time. Hence, roving on roads is much
more practical and a necessary condition to travel from site to site. The campaigns in the Sheepdrove Farm
combine both, road and field data, from which it could be inferred which number of measurements in the
field is needed, in addition to the road data, to obtain an acceptable estimate of the field soil moisture.

In Figure 11, all data points obtained during each campaign were bootstrapped, leading to more than 2,000
combinations of road and field measurements. The figure shows that the inclusion of uncorrected road
points (red) can lead to an unreliable average value. Depending on wetness conditions, at least 80–95% of
the data points should be taken in the field to obtain an average that is within a 2% accuracy range

Figure 10. Interpolated soil moisture inferred from rover measurements for experiments C1–C3, showing (left) uncorrected road data, (middle) corrected road data,
and (right) field data. Next to it, the probability density functions of data in the overlapping areas show that the corrected road data (blue) can represent the field
data (grey) better than the uncorrected road data (red). Mean and standard deviation of each distribution are provided in the top right corner. Performance in
terms of root-mean-square errors (RMSE) is given in the supporting information.
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around the mean field water content. In contrast to uncorrected data, corrected road data (blue) are already
good predictors for field soil moisture when any number of survey points on the road and in the field are
averaged.

The analysis shows that any combination of field data and corrected road data can lead to a sufficiently accu-
rate estimation of average water content in the survey area. However, the correction procedure is highly sen-
sitive to supporting information like road moisture, field moisture, and road width (see Figure 4). If these
parameters are uncertain, their impact on the CRNS product could be substantial. The impact could be
reduced by calibrating the road correction parameters with road and field data at selected anchor locations,
or by including a substantial number of field data points in the data set measured only on roads.

4. Conclusions

The mobile cosmic ray neutron sensor (CRNS rover) was successfully applied to estimate soil moisture at
scales from a few meters to a few square kilometers. One of the most prominent insights from the detailed
and extensive investigations is the confirmation that the CRNS rover is capable of capturing small-scale pat-
terns at resolutions of 10–100 m. This result opens the path for noninvasive tomography of root-zone soil
moisture patterns in small catchments and agricultural fields, where traditional methods would require
exhaustive and time-consuming efforts.

The study revealed the critical need to apply correction approaches to account for the local effects of dry
roads. The different experiments carried out in the course of this study showed a critical loss in the capability
to estimate average field soil moisture when the field was not accessible and the measurements were taken
on roads only. This effect was quantified in this study for the first time using neutron transport simulations,
and confirmed by dedicated experiments.

We propose an analytical correction function which accounts for road type and soil moisture conditions. As
the analytical form of the corresponding relations was based on physical reasoning, and the parameters were
determined with the help of neutron simulations, the approach can be assumed to be universally applicable.
However, the analytical fit showed a few limitations for roads that are wetter than the field, and for roads
wider than 7 m. The approach is further sensitive to the road parameters like width w and moisture θroad .
While themeasurement of roadmoisture content is impractical, this quantity could be treated as a calibration
parameter by comparing data on the road and in the field at certain anchor locations.

Figure 11. Apparent average soil moisture for 2,000 combinations of road and nonroad (i.e., field) points in experiments C1–C3 plotted as a function of the fraction of
selected road points in the ensemble to the total number of selected points (i.e., sum of road and field). Data are shown for uncorrected (red) and corrected
(blue) road effects. If data are not corrected, a maximum fraction of road points between 0.20 and 0.05 is acceptable (under dry or wet conditions, respectively) to
obtain a realistic estimate of field soil moisture within 2 % accuracy.
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The correction approach further depends on prior knowledge of field soil moisture (equations (4) and (5)). To
circumvent this requirement, an adaption of the equation has been proposed that takes the uncorrected first-
order approximation,θðNÞ, as a proxy instead (equation (6)). Although we have shown its performance for the
two, climatologically similar sites on ten different days throughout the years, the empirical character of this
alternative approach (see section 3.3) requires more tests at more sites and different conditions.

The corrected road data were compared with field soil moisture inferred from independent TDR (experiment
A) and rover measurements (experiments B and C). In all cases the corrected soil moisture product sensed
from the road was more consistent with the overall pattern, the mean, and the standard deviation of soil
moisture in the field. However, the method has problems to resolve patterns when fields on the left and right
from the road have different soil water contents or are located behind hedges.

Nevertheless, a considerable amount of uncertainty is introduced to measurements from roads due to the
high contribution of nonfield neutrons and the uncertain properties of the road and its surroundings.
Therefore, it is advisable to avoid wide roads, to drive directly on the field wherever possible, or to take addi-
tional measurements on the field every now and then. This is advisable not only to make sure that the para-
meters of the road correction lead to a proper representation of field soil moisture, but also to support spatial
interpolation. In future campaigns, capturing imagery could be a potential advancement to support the esti-
mation of material parameters for roads and vegetation along the track.

Based on the conclusions above, we generally recommend to correct for the road effect before spatial CRNS
data are used to support hydrological models or agricultural decisions. With regards to evaluation of remote-
sensing products (e.g., Chrisman & Zreda, 2013) dry roads are also part of the remotely sensed average soil
moisture, so that different correction approaches might be needed to compare both area-averaged products.
There might also be ways to reduce the contribution of the roads in future developments of the neutron
detector. For example by mounting the detector on top of the car where it is more exposed to far-
field neutrons.
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