42 research outputs found

    Detection and long-term quantification of methane emissions from an active landfill

    Get PDF
    Landfills are a significant source of fugitive methane (CH4) emissions, which should be precisely and regularly monitored to reduce and mitigate net greenhouse gas emissions. In this study, we present long-term, in situ, near-surface, mobile atmospheric CH4 mole fraction measurements (complemented by meteorological measurements from a fixed station) from 21 campaigns that cover approximately 4 years from September 2016 to December 2020. These campaigns were utilized to regularly quantify the total CH4 emissions from an active landfill in France. We use a simple atmospheric inversion approach based on a Gaussian plume dispersion model to derive CH4 emissions. Together with the measurements near the soil surface, mainly dedicated to the identification of sources within the landfill, measurements of CH4 made on the landfill perimeter (near-field) helped us to identify the main emission areas and to provide some qualitative insights about the rank of their contributions to total emissions from the landfill. The two main area sources correspond, respectively, to a covered waste sector with infrastructure with sporadic leakages (such as wells, tanks, pipes, etc.) and to the last active sector receiving waste during most of the measurement campaigns. However, we hardly managed to extract a signal representative of the overall landfill emissions from the near-field measurements, which limited our ability to derive robust estimates of the emissions when assimilating them in the atmospheric inversions. The analysis shows that the inversions based on the measurements from a remote road further away from the landfill (far-field) yielded reliable estimates of the total emissions but provided less information on the spatial variability of emissions within the landfill. This demonstrates the complementarity between the near- and far-field measurements. According to these inversions, the total CH4 emissions have a large temporal variability and range from ∼ 0.4 to ∼ 7 t CH4 d−1, with an average value of ∼ 2.1 t CH4 d−1. We find a weak negative correlation between these estimates of the CH4 emissions and atmospheric pressure for the active landfill. However, this weak emission–pressure relationship is based on a relatively small sample of reliable emission estimates with large sampling gaps. More frequent robust estimations are required to better understand this relationship for an active landfill.</p

    Ethane measurement by Picarro CRDS G2201-i in laboratory and field conditions: potential and limitations

    Get PDF
    Atmospheric ethane can be used as a tracer to distinguish methane sources, both at the local and global scale. Currently, ethane can be measured in the field using flasks or in situ analyzers. In our study, we characterized the CRDS Picarro G2201-i instrument, originally designed to measure isotopic CH4 and CO2, for measurements of ethane-to-methane ratio in mobile-measurement scenarios, near sources and under field conditions. We evaluated the limitations and potential of using the CRDS G2201-i to measure the ethane-to-methane ratio, thus extending the instrument application to simultaneously measure two methane source proxies in the field: carbon isotopic ratio and the ethane-to-methane ratio. First, laboratory tests were run to characterize the instrument in stationary conditions. Subsequently, the instrument performance was tested in field conditions as part of a controlled release experiment. Finally, the instrument was tested during mobile measurements focused on gas compressor stations. The results from the field were afterwards compared with the results obtained from instruments specifically designed for ethane measurements. Our study shows the potential of using the CRDS G2201-i instrument in a mobile configuration to determine the ethane-to-methane ratio in methane plumes under measurement conditions with an ethane uncertainty of 50 ppb. Assuming typical ethane-to-methane ratios ranging between 0 and 0.1 ppb ppb(-1), we conclude that the instrument can accurately estimate the "true" ethane-to-methane ratio within 1 sigma uncertainty when CH4 enhancements are at least 1 ppm, as can be found in the vicinity of strongly emitting sites such as natural gas compressor stations and roadside gas pipeline leaks

    Kinetics of the hydrogen abstraction ·C2H5 + alkane → C2H6 + alkyl reaction class: an application of the reaction class transition state theory

    Get PDF
    This paper presents an application of the reaction class transition state theory (RC-TST) to predict thermal rate constants for hydrogen abstraction reactions at alkane by the C2H5 radical on-the-fly. The linear energy relationship (LER), developed for acyclic alkanes, was also proven to hold for cyclic alkanes. We have derived all RCTST parameters from rate constants of 19 representative reactions, coupling with LER and the barrier height grouping (BHG) approach. Both the RC-TST/LER, where only reaction energy is needed, and the RC-TST/BHG, where no other information is needed, can predict rate constants for any reaction in this reaction class with satisfactory accuracy for combustion modeling. Our analysis indicates that less than 50% systematic errors on the average exist in the predicted rate constants using either the RC-TST/LER or RC-TST/BHG method, while in comparison with explicit rate calculations, the differences are within a factor of 2 on the average. The results also show that the RC-TST method is not sensitive to the choice of density functional theory used

    Dataset: Statistical evaluation of methane isotopic signatures determined during near-source measurements

    No full text
    Methane isotopic signature data collected during cotrolled release experiment. Cotrolled took place in September 2019 in Bedford and was a collaboration between NPL, RHUL and LSCE. Bag samples were collected during releases and measured aftterwards or using IRMs or CRDS. CRDS AirCore sampling was made in situ during methane release. Data were used to verify methods used to determien methane isotopic signature from mobile indorect measurements.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Ground-Based Mobile Measurements to Track Urban Methane Emissions from Natural Gas in 12 Cities across Eight Countries

    No full text
    International audienceTo mitigate methane emission from urban natural gas distribution systems, it is crucial to understand local leak rates and occurrence rates. To explore urban methane emissions in cities outside the U.S., where significant emissions were found previously, mobile measurements were performed in 12 cities across eight countries. The surveyed cities range from medium size, like Groningen, NL, to large size, like Toronto, CA, and London, UK. Furthermore, this survey spanned across European regions from Barcelona, ES, to Bucharest, RO. The joint analysis of all data allows us to focus on general emission behavior for cities with different infrastructure and environmental conditions. We find that all cities have a spectrum of small, medium, and large methane sources in their domain. The emission rates found follow a heavytailed distribution, and the top 10% of emitters account for 60-80% of total emissions, which implies that strategic repair planning could help reduce emissions quickly. Furthermore, we compare our findings with inventory estimates for urban natural gas-related methane emissions from this sector in Europe. While cities with larger reported emissions were found to generally also have larger observed emissions, we find clear discrepancies between observation-based and inventory-based emission estimates for our 12 cities

    Ground-Based Mobile Measurements to Track Urban Methane Emissions from Natural Gas in 12 Cities across Eight Countries

    No full text
    To mitigate methane emission from urban natural gas distribution systems, it is crucial to understand local leak rates and occurrence rates. To explore urban methane emissions in cities outside the U.S., where significant emissions were found previously, mobile measurements were performed in 12 cities across eight countries. The surveyed cities range from medium size, like Groningen, NL, to large size, like Toronto, CA, and London, UK. Furthermore, this survey spanned across European regions from Barcelona, ES, to Bucharest, RO. The joint analysis of all data allows us to focus on general emission behavior for cities with different infrastructure and environmental conditions. We find that all cities have a spectrum of small, medium, and large methane sources in their domain. The emission rates found follow a heavy-tailed distribution, and the top 10% of emitters account for 60–80% of total emissions, which implies that strategic repair planning could help reduce emissions quickly. Furthermore, we compare our findings with inventory estimates for urban natural gas-related methane emissions from this sector in Europe. While cities with larger reported emissions were found to generally also have larger observed emissions, we find clear discrepancies between observation-based and inventory-based emission estimates for our 12 cities
    corecore