127 research outputs found
MarkerMiner 1.0: a new application for phylogenetic marker development using angiosperm transcriptomes
Premise of the study: Targeted sequencing using next-generation sequencing (NGS) platforms offers enormous potential for plant systematics by enabling economical acquisition of multilocus data sets that can resolve difficult phylogenetic problems. However, because discovery of single-copy nuclear (SCN) loci from NGS data requires both bioinformatics skills and access to high-performance computing resources, the application of NGS data has been limited.
Methods and Results: We developed MarkerMiner 1.0, a fully automated, open-access bioinformatic workflow and application for discovery of SCN loci in angiosperms. Our new tool identified as many as 1993 SCN loci from transcriptomic data sampled as part of four independent test cases representing marker development projects at different phylogenetic scales.
Conclusions: MarkerMiner is an easy-to-use and effective tool for discovery of putative SCN loci. It can be run locally or via the Web, and its tabular and alignment outputs facilitate efficient downstream assessments of phylogenetic utility, locus selection, intron-exon boundary prediction, and primer or probe development
A new look at adopter categories and on alternative proposal for targetgrouping of farming community
Ritonavir blocks AKT signaling, activates apoptosis and inhibits migration and invasion in ovarian cancer cells
<p>Abstract</p> <p>Background</p> <p>Ovarian cancer is the leading cause of mortality from gynecological malignancies, often undetectable in early stages. The difficulty of detecting the disease in its early stages and the propensity of ovarian cancer cells to develop resistance to known chemotherapeutic treatments dramatically decreases the 5-year survival rate. Chemotherapy with paclitaxel after surgery increases median survival only by 2 to 3 years in stage IV disease highlights the need for more effective drugs. The human immunodeficiency virus (HIV) infection is characterized by increased risk of several solid tumors due to its inherent nature of weakening of immune system. Recent observations point to a lower incidence of some cancers in patients treated with protease inhibitor (PI) cocktail treatment known as HAART (Highly Active Anti-Retroviral Therapy).</p> <p>Results</p> <p>Here we show that ritonavir, a HIV protease inhibitor effectively induced cell cycle arrest and apoptosis in ovarian cell lines MDH-2774 and SKOV-3 in a dose dependent manner. Over a 3 day period with 20 μM ritonavir resulted in the cell death of over 60% for MDAH-2774 compared with 55% in case of SKOV-3 cell line. Ritonavir caused G1 cell cycle arrest of the ovarian cancer cells, mediated by down modulating levels of RB phosphorylation and depleting the G1 cyclins, cyclin-dependent kinase and increasing their inhibitors as determined by gene profile analysis. Interestingly, the treatment of ritonavir decreased the amount of phosphorylated AKT in a dose-dependent manner. Furthermore, inhibition of AKT by specific siRNA synergistically increased the efficacy of the ritonavir-induced apoptosis. These results indicate that the addition of the AKT inhibitor may increase the therapeutic efficacy of ritonavir.</p> <p>Conclusion</p> <p>Our results demonstrate a potential use of ritonavir for ovarian cancer with additive effects in conjunction with conventional chemotherapeutic regimens. Since ritonavir is clinically approved for human use for HIV, drug repositioning for ovarian cancer could accelerate the process of traditional drug development. This would reduce risks, limit the costs and decrease the time needed to bring the drug from bench to bedside.</p
Sulforaphane induces cell cycle arrest by protecting RB-E2F-1 complex in epithelial ovarian cancer cells
<p>Abstract</p> <p>Background</p> <p>Sulforaphane (SFN), an isothiocyanate phytochemical present predominantly in cruciferous vegetables such as brussels sprout and broccoli, is considered a promising chemo-preventive agent against cancer. In-vitro exposure to SFN appears to result in the induction of apoptosis and cell-cycle arrest in a variety of tumor types. However, the molecular mechanisms leading to the inhibition of cell cycle progression by SFN are poorly understood in epithelial ovarian cancer cells (EOC). The aim of this study is to understand the signaling mechanisms through which SFN influences the cell growth and proliferation in EOC.</p> <p>Results</p> <p>SFN at concentrations of 5 - 20 μM induced a dose-dependent suppression of growth in cell lines MDAH 2774 and SkOV-3 with an IC50 of ~8 μM after a 3 day exposure. Combination treatment with chemotherapeutic agent, paclitaxel, resulted in additive growth suppression. SFN at ~8 μM decreased growth by 40% and 20% on day 1 in MDAH 2774 and SkOV-3, respectively. Cells treated with cytotoxic concentrations of SFN have reduced cell migration and increased apoptotic cell death via an increase in Bak/Bcl-2 ratio and cleavage of procaspase-9 and poly (ADP-ribose)-polymerase (PARP). Gene expression profile analysis of cell cycle regulated proteins demonstrated increased levels of tumor suppressor retinoblastoma protein (RB) and decreased levels of E2F-1 transcription factor. SFN treatment resulted in G1 cell cycle arrest through down modulation of RB phosphorylation and by protecting the RB-E2F-1 complex.</p> <p>Conclusions</p> <p>SFN induces growth arrest and apoptosis in EOC cells. Inhibition of retinoblastoma (RB) phosphorylation and reduction in levels of free E2F-1 appear to play an important role in EOC growth arrest.</p
Histological validation of a type 1 diabetes clinical diagnostic model for classification of diabetes
This is the final version. Available on open access from Wiley via the DOI in this recordAims: Misclassification of diabetes is common due to an overlap in the clinical features of type 1 and type 2 diabetes. Combined diagnostic models incorporating clinical and biomarker information have recently been developed that can aid classification, but they have not been validated using pancreatic pathology. We evaluated a clinical diagnostic model against histologically defined type 1 diabetes. Methods: We classified cases from the Network for Pancreatic Organ donors with Diabetes (nPOD) biobank as type 1 (n = 111) or non-type 1 (n = 42) diabetes using histopathology. Type 1 diabetes was defined by lobular loss of insulin-containing islets along with multiple insulin-deficient islets. We assessed the discriminative performance of previously described type 1 diabetes diagnostic models, based on clinical features (age at diagnosis, BMI) and biomarker data [autoantibodies, type 1 diabetes genetic risk score (T1D-GRS)], and singular features for identifying type 1 diabetes by the area under the curve of the receiver operator characteristic (AUC-ROC). Results: Diagnostic models validated well against histologically defined type 1 diabetes. The model combining clinical features, islet autoantibodies and T1D-GRS was strongly discriminative of type 1 diabetes, and performed better than clinical features alone (AUC-ROC 0.97 vs. 0.95; P = 0.03). Histological classification of type 1 diabetes was concordant with serum C-peptide [median < 17 pmol/l (limit of detection) vs. 1037 pmol/l in non-type 1 diabetes; P < 0.0001]. Conclusions: Our study provides robust histological evidence that a clinical diagnostic model, combining clinical features and biomarkers, could improve diabetes classification. Our study also provides reassurance that a C-peptide-based definition of type 1 diabetes is an appropriate surrogate outcome that can be used in large clinical studies where histological definition is impossible. Parts of this study were presented in abstract form at the Network for Pancreatic Organ Donors Conference, Florida, USA, 19–22 February 2019 and Diabetes UK Professional Conference, Liverpool, UK, 6–8 March 2019.Diabetes UKNational Institutes of Health (NIH)National Institute for Health Research (NIHR)JDRFHelmsley Charitable Trus
Landholder Typologies Used in the Development of Natural Resource Management Programs in Australia - A Review
This article reviews the literature on the identification of landholder typologies that can be used to assist the design and delivery of natural resource management (NRM) programs. Australian researchers have developed typologies of landholders based on a variety of criteria. The rationale for developing landholder typologies is first discussed before reviewing the various approaches that have been used by Australian researchers and comparing their findings. The methods employed have differed according to the theories used to guide the research and the 'clients' or 'sponsors' of the research. The landholder types they describe, however, have a number of similarities. These similarities suggest that the studies have identified the same fundamental divisions in the rural community, and that it may be possible to integrate landholder typologies for a variety of NRM and non-NRM applications. It is concluded that further research could usefully investigate whether concepts of social class or sub-cultures may be appropriate to define and describe the variations in landholder types
A physical map for the Amborella trichopoda genome sheds light on the evolution of angiosperm genome structure
Background: Recent phylogenetic analyses have identified Amborella trichopoda, an understory tree species endemic to the forests of New Caledonia, as sister to a clade including all other known flowering plant species. The Amborella genome is a unique reference for understanding the evolution of angiosperm genomes because it can serve as an outgroup to root comparative analyses. A physical map, BAC end sequences and sample shotgun sequences provide a first view of the 870 Mbp Amborella genome.Results: Analysis of Amborella BAC ends sequenced from each contig suggests that the density of long terminal repeat retrotransposons is negatively correlated with that of protein coding genes. Syntenic, presumably ancestral, gene blocks were identified in comparisons of the Amborella BAC contigs and the sequenced Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera and Oryza sativa genomes. Parsimony mapping of the loss of synteny corroborates previous analyses suggesting that the rate of structural change has been more rapid on lineages leading to Arabidopsis and Oryza compared with lineages leading to Populus and Vitis. The gamma paleohexiploidy event identified in the Arabidopsis, Populus and Vitis genomes is shown to have occurred after the divergence of all other known angiosperms from the lineage leading to Amborella.Conclusions: When placed in the context of a physical map, BAC end sequences representing just 5.4% of the Amborella genome have facilitated reconstruction of gene blocks that existed in the last common ancestor of all flowering plants. The Amborella genome is an invaluable reference for inferences concerning the ancestral angiosperm and subsequent genome evolution
A Consensus Genetic Map for Pinus taeda and Pinus elliottii and Extent of Linkage Disequilibrium in Two Genotype-Phenotype Discovery Populations of Pinus taeda
A consensus genetic map for Pinus taeda (loblolly pine) and Pinus elliottii (slash pine) was constructed by merging three previously published P. taeda maps with a map from a pseudo-backcross between P. elliottii and P. taeda. The consensus map positioned 3856 markers via genotyping of 1251 individuals from four pedigrees. It is the densest linkage map for a conifer to date. Average marker spacing was 0.6 cM and total map length was 2305 cM. Functional predictions of mapped genes were improved by aligning expressed sequence tags used for marker discovery to full-length P. taeda transcripts. Alignments to the P. taeda genome mapped 3305 scaffold sequences onto 12 linkage groups. The consensus genetic map was used to compare the genome-wide linkage disequilibrium in a population of distantly related P. taeda individuals (ADEPT2) used for association genetic studies and a multiple-family pedigree used for genomic selection (CCLONES). The prevalence and extent of LD was greater in CCLONES as compared to ADEPT2; however, extended LD with LGs or between LGs was rare in both populations. The average squared correlations, r2, between SNP alleles less than 1 cM apart were less than 0.05 in both populations and r2 did not decay substantially with genetic distance. The consensus map and analysis of linkage disequilibrium establish a foundation for comparative association mapping and genomic selection in P. taeda and P. elliottii.J.W.W. was supported by a USDA CSREES Food and Agricultural Sciences National Needs Graduate Fellowship. V.E.C. was supported by USDA NIFA Award #2011-68002-30185 (PINEMAP) and the USDA Forest Service. L.S.W. was supported by the National Science Foundation under grant no. ABI-1062432 to Indiana University. P.M.G., D.N., and K.M. were supported in part by USDA NIFA Award #2011-67009-30030 (PineRefSeq) to University of California, Davis.Peer reviewe
Alternative splicing of barley clock genes in response to low temperature:evidence for alternative splicing conservation
Alternative splicing (AS) is a regulated mechanism that generates multiple transcripts from individual genes. It is widespread in eukaryotic genomes and provides an effective way to control gene expression. At low temperatures, AS regulates Arabidopsis clock genes through dynamic changes in the levels of productive mRNAs. We examined AS in barley clock genes to assess whether temperature-dependent AS responses also occur in a monocotyledonous crop species. We identify changes in AS of various barley core clock genes including the barley orthologues of Arabidopsis AtLHY and AtPRR7 which showed the most pronounced AS changes in response to low temperature. The AS events modulate the levels of functional and translatable mRNAs, and potentially protein levels, upon transition to cold. There is some conservation of AS events and/or splicing behaviour of clock genes between Arabidopsis and barley. In addition, novel temperature-dependent AS of the core clock gene HvPPD-H1 (a major determinant of photoperiod response and AtPRR7 orthologue) is conserved in monocots. HvPPD-H1 showed a rapid, temperature-sensitive isoform switch which resulted in changes in abundance of AS variants encoding different protein isoforms. This novel layer of low temperature control of clock gene expression, observed in two very different species, will help our understanding of plant adaptation to different environments and ultimately offer a new range of targets for plant improvement
- …