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Abstract

Aims Misclassification of diabetes is common due to an overlap in the clinical features of type 1 and type 2 diabetes.

Combined diagnostic models incorporating clinical and biomarker information have recently been developed that can

aid classification, but they have not been validated using pancreatic pathology. We evaluated a clinical diagnostic model

against histologically defined type 1 diabetes.

Methods We classified cases from the Network for Pancreatic Organ donors with Diabetes (nPOD) biobank as type 1

(n = 111) or non-type 1 (n = 42) diabetes using histopathology. Type 1 diabetes was defined by lobular loss of insulin-

containing islets along with multiple insulin-deficient islets. We assessed the discriminative performance of previously

described type 1 diabetes diagnostic models, based on clinical features (age at diagnosis, BMI) and biomarker data

[autoantibodies, type 1 diabetes genetic risk score (T1D-GRS)], and singular features for identifying type 1 diabetes by

the area under the curve of the receiver operator characteristic (AUC-ROC).

Results Diagnostic models validated well against histologically defined type 1 diabetes. The model combining clinical

features, islet autoantibodies and T1D-GRS was strongly discriminative of type 1 diabetes, and performed better than

clinical features alone (AUC-ROC 0.97 vs. 0.95; P = 0.03). Histological classification of type 1 diabetes was concordant

with serum C-peptide [median < 17 pmol/l (limit of detection) vs. 1037 pmol/l in non-type 1 diabetes; P < 0.0001].

Conclusions Our study provides robust histological evidence that a clinical diagnostic model, combining clinical

features and biomarkers, could improve diabetes classification. Our study also provides reassurance that a C-peptide-

based definition of type 1 diabetes is an appropriate surrogate outcome that can be used in large clinical studies where

histological definition is impossible.

Parts of this study were presented in abstract form at the Network for Pancreatic Organ Donors Conference, Florida,

USA, 19–22 February 2019 and Diabetes UK Professional Conference, Liverpool, UK, 6–8 March 2019.
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Introduction

Correct classification of diabetes type is crucial for appropriate

management reduction of long-term complications. A funda-

mental difference between type 1 and type 2 diabetes is that the

former is characterized by rapid progression to endogenous

insulin deficiency due to autoimmune b-cell destruction. This
difference forms the basis of differences in their treatment and

management [1–3], however, this aetiopathological definition

is difficult to apply in clinical practice.

Clinical features are predominately used for classification of

diabetes type, with only age at diagnosis and BMI having

evidence for clinical utility at onset [4].Rising obesity rates and

type 2 diabetes in young people, and the incidence of type 1

diabetes throughout life [5–7] mean that misclassification of

diabetes is common, occurring in 7–15% of cases [4].

Although measurement of islet autoantibodies can assist
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classification, they are not perfectly discriminatory as some

people with type 1 diabetes do not have islet autoantibodies

and although relatively rare, autoantibodies positivity can

occur in type 2 diabetes [8]. Type 1 diabetes genetic risk scores

(T1D-GRS) have recently been shown to assist in discriminat-

ing between type 1, type 2 and other forms of diabetes in

research settings [9,10]. Studies such as the SEARCH for

Diabetes in Youth have developed classification criteria that

are helpful in guiding diabetes classification at diagnosis and

have informed international guidelines [11], but a difficulty

with all of these studies is which standard to validate against,

and that current guidelines are unable to provide simple

criteria that will always ensure correct diagnosis [1–3].

Wehave shown previously that both clinical features [12] and

biomarkers, such as autoantibodies and T1D-GRS, are most

discriminative of diabetes type when combined and modelled

continuously in diagnostic models that can be made widely

availableasanapporwebcalculator [4,9,13].Thesemodelswere

developed and validated onC-peptide-defined type 1 and type 2

diabetes,representingdifferences inendogenousinsulinsecretion

between the two types. A pilot version of our recently published

model is available online (https://www.diabetesgenes.org/t1d

t2d-prediction-model/). Measurement of C-peptide allows

robust diagnosis of type 1 diabetes in long-standing diabetes

(> 3 years’ duration) and closely relates to treatment require-

ments [14]. A strength of using C-peptide as an outcome is that,

irrespective of any assumptions about aetiology, progression to

lowC-peptide associates very stronglywith insulin requirement.

An alternative ‘gold standard’ would be pancreatic histol-

ogy, informed by internationally accepted histological criteria

[15]. Many other human diseases use histology as a gold

standard, but this is not available in living people with

diabetes due to the dangers of pancreatic biopsy [16]. The

Network for Pancreatic Organ donors with Diabetes (nPOD)

is a unique collection of human pancreata from organ donors

with and without diabetes, including those with type 1 and

type 2 diabetes, as well as autoantibody-positive donors

without diabetes [17]. Using the nPOD biobank tissues and

associated metadata, we sought to validate the performance of

a previously developed clinical diagnostic model against

histologically defined insulin deficiency defining type 1

diabetes. It has never been possible to validate diabetes

classification against histology, and we aimed to take advan-

tage of the nPOD biobank tissues and associated metadata to

define a histological outcome which we have used to support

findings from clinical studies of living patients.

Research design and methods

We assessed the performance of our previously developed

diagnostic model based on clinical features (age at diagnosis

and BMI) and biomarker data [islet antigen 2 (IA2) and

glutamic acid decarboxylase (GAD) antibody status and

T1D-GRS] in a histologically defined cohort of type 1 and

non-type 1 diabetes from the nPOD biobank. We compared

model performance with the performance of individual

clinical features and biomarkers.

Study cohort

We identified 221 nPOD diabetes cases with native pancreas

available and complete nPOD online pathology. We

excluded four cases with known monogenic forms [18] and

11 with secondary causes of diabetes, because the model was

designed to discriminate type 1 diabetes from type 2 diabetes.

We excluded 53 cases due to incomplete biomarker or

clinical information (BMI, age at diagnosis, IA2 and GAD

antibody status, T1D-GRS). We categorized diabetes and

analysed diagnostic model performance in the remaining 153

cases (Fig. 1). Clinical history, histopathology notes and slide

digitization were available through nPOD as described

previously [17]. A summary of characteristics for this cohort

is shown in Table 1.

Histological definition of type 1 and non-type 1 diabetes

We categorized diabetes as type 1 (n = 111) or non-type 1

(n = 42) using visualization of digitized slides via nPOD

online pathology database and/or nPOD pancreas material

held in Exeter, which were stained for the presence of insulin

and/or glucagon using standard immunohistochemical

approaches, as described previously [19,20]. Slides were

double-stained for insulin/glucagon, or serial sections were

stained for insulin and glucagon respectively, where align-

ment of the two allowed identification of insulin-deficient

What’s new?

• Misclassification of diabetes at diagnosis is common

due to an overlap in the clinical features of type 1 and

type 2 diabetes.

• Combining clinical features and biomarkers in a diag-

nostic model improved discrimination of diabetes type,

defined by insulin deficiency (measured by C-peptide

assays), over use of any single characteristic.

• No diabetes classification studies have used pancreatic

histology to define type 1 diabetes.

• A diagnostic model, developed using diabetes type

defined by C-peptide level as an outcome, validates

against histologically defined insulin deficiency.

• C-peptide provides a robust surrogate definition of type

1 diabetes that can be used in diagnostic model

development.

• Our study provides the first histological evidence for a

clinical diagnostic model having utility to identify type

1 diabetes in clinical practice.
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islets. Histology was reviewed by two independent investi-

gators in Exeter. A minimum of two slices per pancreas

section (head, body or tail) per donor was reviewed. We

defined type 1 diabetes histologically by the lobular loss of

insulin-containing islets with the presence of multiple (> 10)

insulin-deficient islets. Non-type 1 diabetes was defined as

having no insulin-deficient islets across all viewed sections of

the pancreas [15]. Islets were defined as having > 10 insulin-

and/or glucagon-positive cells. As there is no internationally

agreed definition of type 2 diabetes, we did not attempt to

positively classify type 2 diabetes on histology.

Autoantibody measurement

Autoantibody positivity status was measured by nPOD

(Organ Procurement Organizations screening laboratories)

using a modified rapid enzyme-linked immunosorbent assay

(ELISA) kit (Kronus, Star, ID, USA) with internal calibration

on donor serum. Autoantibody-positive samples were re-

analysed with an ELISA kit (Kronus, Gainesville, FL, USA),

and at the nPOD autoantibody core for GAD antibody, IA2

antibody, micro Insulin Autoantibody and Zinc Transporter

8 Autoantibody by radioligand-binding assay (Denver, CO,

USA) [21] as described previously [22].

C-peptide measurement and DNA isolation

Sera were obtained during the donor-screening process and/

or at donor organ recovery. Donor C-peptide was

Histological non-Type 1 diabetes cases
N=42

Histological Type 1 diabetes cases
n=111

No Yes

nPOD diabetes* cases with native pancreas available and 
complete online pathology and model variables n=153

Presence of significant lobular loss of insulin-containing islets resulting 
in >10 insulin deficient islets:

*Excluding known monogenic forms (18) (n=4) and secondary causes of diabetes (n=11).

FIGURE 1 Flow diagram of histological cohort identification from nPOD diabetes cases, excluding known monogenic forms and secondary causes of

diabetes. All cases included had age at diagnosis, BMI, glutamic acid decarboxylase (GAD) antibody and islet antigen 2 (IA2) antibody status, and

type 1 diabetes genetic risk score (T1D-GRS) recorded.

Table 1 Characteristics of histologically defined cohort

Non-type 1
diabetes
(n = 42)

Type 1 diabetes
(n = 111)

BMI (kg/m2) 29.9 [27.5; 34.3] 24.3 [22; 26.6]
Age at onset (years) 37.5 [26.8; 52.3] 11.5 [6.25; 17.3]
Diabetes duration
(years)

10 [1; 15] 12 [6; 23]

Age of death (years) 48.2 [40; 59.3] 27.6 [19.5; 37.1]
Sex

Female 20 (48) 51 (46)
Male 22 (52) 60 (54)

Genetic risk score 0.23 [0.21; 0.26] 0.27 [0.25; 0.29]
C-peptide (pmol/l) 1037 [429; 2072] < 17* [< 17*;

< 17*]
Antibodies†

0 38 (91) 56 (51)
1 4 (10) 32 (29)
2 0 (0.0) 10 (9)
3 0 (0.0) 13 (12)

Race
African American 12 (29) 11 (10)
Asian 2 (4.8) 0 (0.0)
White European 20 (48) 91 (82)
Hispanic/Latino 8 (19) 9 (8.1)

Values are shown as median [25th; 75th percentiles] or n (%).
*Limit of detection.
†Islet autoantibodies counted include glutamic acid decarboxy-
lase antibodies, islet antigen 2 antibodies, and Zinc Transporter
8 Autoantibody. micro Insulin Autoantibody is not included in
this count as it is not a reliable marker of autoimmunity in
persons receiving exogenous insulin.
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determined at the Northwest Lipid Metabolism and Diabetes

Research Laboratories (S. Marcovina, University of Washing-

ton, Seattle, WA, USA) by a two-site immuno-enzymometeric

assayusingaTosoh2000auto-analyser (TOSOH,Biosciences,

Inc., San Francisco, CA, USA). C-peptide levels are reported in

pmol/l with 1000 pmol/l = 3 ng/ml. We did not perform a

primary analysis against C-peptide as an outcome because of

the interactionbetweenrenal failure (frequent inorgandonors)

and sample storage time (also less controlled in organ donors).

DNA was extracted from frozen spleen where available [17]

and analysed for type 1 diabetes genetic susceptibility on a

UFDIchip Axiom genotyping array (ThermoFisher Scientific,

Waltham,MA, USA) as described below.

T1D-GRS generation

The T1D-GRS was generated using 30 single nucleotide

polymorphisms (SNPs) either genotyped directly (n = 26)

or imputed (n = 4, imputation r2 > 0.90) from a custom

UFDIchip Axiom genotyping array from ThermoFisher Sci-

entific. In total, the array covers 974 650 unique variants.

UFDIchips were processed on an Affymetrix Gene

Titan instrument with external sample handling on

a BioMek FX dual arm robotic workstation. Genetic data

underwent standard quality control procedures at the SNP,

sample and plate levels using AxiomTM Analysis Suite 3.0

(ThermoFisher Scientific) set to default stringency thresh-

olds as recommended. Next, discrepancies were assessed

for genotyped Human Leukocyte Antigen (HLA) vs.

imputed four-digit HLA (AxiomTM HLA Analysis software),

as well as for genetic vs. reported sex. Samples that failed

QC or were discordant were discarded. Finally, samples

were imputed to the Human Reference Consortium (ver-

sion r1.1) using Michigan Imputation Server [23]. T1D-

GRS was calculated on the nPOD cohort as described

previously [9,24] and indicates type 1 diabetes risk as a

continuous variable.

Combined diagnostic model

We calculated the probability of type 1 diabetes on all 153

included cases using our previously developed diagnostic

model [13] (Table S1). We assessed performance of the

model against histologically defined type 1 diabetes in the

nPOD cohort. We tested the previously developed clinical

diagnostic model in four combinations:

1. Clinical features only (age at diagnosis + BMI);

2. Clinical features + T1D-GRS;

3. Clinical features + IA2 antibody + GAD antibody;

4. Clinical features + IA2 antibody + GAD antibody + T1D-

GRS.

The primary analysis was to assess the discriminative

power and calibration of the diagnostic model in nPOD. We

carried out a secondary sensitivity analysis in a white

European ancestry subgroup of the cohort diagnosed at

between 18 and 50 years of age, in line with the inclusion

criteria of the original model development cohort [13]

(N = 31, type 1 diabetes n = 19; Table S2).

All procedures were in accordance with federal guidelines

for organ donation and approved by the University of Florida

Institutional Review Board.

Statistical methods

Weassessed discriminative performance by estimating the area

under the curve of the receiver operator characteristic (AUC-

ROC). We used the integrated discrimination improvement

index (IDI) [25] to assess improvements in discrimination

slopes when adding in additional features. Calibration was

assessed by comparing observed proportions against predicted

probabilitiesusingcalibrationplotsandtheBrier score,wherea

score of 0 indicates that the model is completely accurate. We

tested for statistical evidence of miscalibration using the

Spiegelhalter z-test (P < 0.05 representing evidence of miscal-

ibration). All AUC-ROC analysis was performed using the

pROC package in R and AUC estimated with DeLong’s

algorithm. We used a two-tailed DeLong comparison of ROC

curves to test for significant improvement in discriminative

power against the clinical features only model. Calibration

analysis and statistics were performed using the Hmisc (Frank

E. Harrell Jr, https://cran.r-project.org/web/packages/Hmisc/

index.html) and rms (Frank E. Harrell Jr, https://cran.r-

project.org/web/packages/rms/index.html) packages in R.

Results

Individual clinical features or biomarkers are discriminative of

type 1 diabetes

Age at diagnosis, BMI, autoantibodies (GAD and IA2) and

T1D-GRS were all strong individual discriminators of type 1

diabetes when modelled continuously (Fig. 2). The discrim-

ination varied from an AUC-ROC of 0.71 for autoantibodies

to 0.93 for age at diagnosis. This highlights that no single

feature in isolation predicted histology perfectly.

Type 1 diabetes clinical diagnostic model validates well

against a histological gold standard

All combinations of the type 1 diabetes clinical diagnostic

model tested validated well against a histological definition

FIGURE 2 Comparative discrimination of type 1 diabetes and non-type 1 diabetes cases from the nPOD biobank. Receiver operating characteristic

(ROC) curve and corresponding area under the curve (AUC) statistics and distribution are shown for BMI (A,B), age at diagnosis (C,D),

autoantibody count (E,F) and type 1 diabetes genetic risk score (G,H).

4
ª 2020 The Authors.

Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK

DIABETICMedicine Histological validation of a type 1 diabetes model � A. L. J. Carr et al.

https://cran.r-project.org/web/packages/Hmisc/index.html
https://cran.r-project.org/web/packages/Hmisc/index.html


B
M

I (
kg

/m
2 )

non-Type 1 diabetes Type 1 diabetes

non-Type 1 diabetes Type 1 diabetes

non-Type 1 diabetes Type 1 diabetes

(a)

(c)

(e)

(g) (h)

(f)

(d)

(b)

ª 2020 The Authors.
Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK 5

Research article DIABETICMedicine



of type 1 diabetes. Model combination 4, using clinical

features continuously with the addition of IA2 and GAD

antibody status, as well as T1D-GRS offers better discrim-

ination than a model using clinical features only [AUC-ROC

= 0.97, 95% confidence interval (CI) 0.95–1.00 vs. 0.95,

95% CI 0.91–0.98; P = 0.03] (Fig. 3). Addition of either IA2

and GAD antibody status or T1D-GRS improved the

discrimination slope (IDI = 0.05, 95% CI 0.01–0.08;

IDI = 0.07, 95% CI 0.02–0.12) (Fig. S1).

The type 1 diabetes clinical diagnostic model calibrates well

The mean overall probabilities of type 1 diabetes in the

nPOD cohort for each combination of clinical diagnostic

model tested closely reflected the proportion of observed type

1 diabetes cases in the study (111 of 153, 73%) (Fig. S2)

indicating overall good calibration. We found no evidence of

miscalibration across all model combinations as indicated by

a low Brier score (B = 0.06–0.08) and non-significant

Spiegelhalter z-statistics (Z < 1.76) (Table S3).

Sensitivity analysis in white European subgroup diagnosed in

adulthood (18–50 years of age)

Results of a sensitivity analysis, using a white European

ancestry subgroup diagnosed at between 18 and 50 years of

age, showed equivalent discriminatory power for all varia-

tions of the type 1 diabetes clinical diagnostic model

(N = 31, type 1 diabetes = 19, AUC-ROC > 0.84)

(Fig. S3). A summary of characteristics for this subgroup is

shown in Table S2.

Characteristics of cases with discordant model classification

compared with histology

The distribution of probabilities of type 1 diabetes generated

by model combination 4 are outlined in Fig. 3(B). This

highlights that a clinical diagnostic model will give an output

that is a continuous distribution of probabilities, with a small

number of type 1 diabetes cases still having low probability

of type 1 diabetes and some without type 1 diabetes still

identified as having a high probability. We examined the

features of cases that had probabilities at the extreme

distributions of model combination 4: two cases with

histological type 1 diabetes who had a probability of type

1 diabetes < 25%; and three cases with histological non-type

1 diabetes who had a probability of type 1 diabetes > 75%.

The characteristics of these cases are outlined in Table S4.

Serum C-peptide levels in these cases matched the histolog-

ical classification (two with histological type 1 diabetes had

C-peptide < 30 pmol/l, and three with histological non-type

1 diabetes had C-peptide > 1000 pmol/l). Despite our

concerns about C-peptide storage and sampling in organ

donors, the observed serum C-peptide levels in type 1 vs.

non-type 1 diabetes in the whole cohort was significantly

different [median < 17 pmol/l (limit of detection) vs. median

1037 pmol/l; P < 0.0001) (Table 1).

Discussion

This is the first study to evaluate a clinical diagnostic model

against histological data. We have demonstrated that a

model developed previously to classify type 1 diabetes

defined by insulin deficiency, is discriminative of type 1

diabetes when using a histological outcome, not possible in

routine clinical care. We found that using a combined model

performed better than individual clinical features and

biomarkers in discriminating type 1 diabetes and non-type

1 diabetes donor cohorts. Our study contributes to the

evidence that diagnostic models combining clinical features

with at least one clinical biomarker could assist classification

of diabetes in clinical practice, and is already available as a

beta-version online (https://www.diabetesgenes.org/t1dt2d-

prediction-model/).

We previously demonstrated that a classification model,

which integrated genetic testing combined with multiple

(a)

(b)

non-Type 1 diabetes Type 1 diabetes

Ty
pe

 1
 d

ia
be

te
s

FIGURE 3 The discriminative ability of diagnostic model 4 combining

BMI, age at diagnosis, autoantibody status and type 1 diabetes genetic

risk score (T1D-GRS) to identify type 1 diabetes cases. Receiver

operating characteristic (ROC) curve and corresponding area under the

curve (AUC) statistics (A). A boxplot of model 4 predicted probabilities

of type 1 diabetes (B).
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continuous clinical variables, was effective at discriminating

maturity-onset diabetes of the young (MODY) from type 1

diabetes [12]. An advantage in identification of MODY is

that the outcome, a genetic mutation causing diabetes, is

often definitive, but there is less clarity on a standard

definition of type 1 and type 2 diabetes. In developing

diagnostic models for diabetes classification, we used pro-

gression to insulin deficiency, as measured by serum C-

peptide in long-standing diabetes (> 3 years’ duration), as a

surrogate marker of type 1 diabetes [9,13]. We assumed that

insulin deficiency, as defined by serum C-peptide

< 200 pmol/l at > 3 years post diagnosis, was an accurate

surrogate of type 1 diabetes [14]. This study provides

evidence that this assumption is valid, by showing that our

model developed on clinical data to predict C-peptide

deficiency near perfectly reflects histologically defined insulin

deficiency (a robust but rarely used definition of type 1

diabetes). This result is further reinforced by comparison of

C-peptide in type 1 and non-type 1 diabetes groups, which

was non-overlapping (Table 1). Clinically, one strength of a

model trained on severe insulin deficiency as an outcome is

that prediction of severe insulin deficiency has a clear

treatment implication, the requirement of exogenous impli-

cations.

We used histological criteria for type 1 diabetes based on

work by Campbell-Thompson et al. [15]. Our criteria focus

on insulin deficiency and the presence of insulin-deficient

islets as a hallmark of type 1 diabetes that is present in all

type 1 diabetes cases. The international consensus definition

of type 1 diabetes histology describes various exclusive

pathological features in the pancreas. These include the

presence of insulitis that is always accompanied by pseudoa-

trophic islets devoid of b cells [15]. However, the proportion

of inflamed islets declines over time such that it is seen most

readily in short duration type 1 diabetes donors (< 1 year)

[26]. As the majority of the nPOD donors had a longer

duration of disease, and the presence of insulin-deficient

islets is evidence of prior insulitis; we used the detection of

insulin-deficient islets as our key histopathological criterion

to define type 1 diabetes in this study.

We focused on the positive histological definition of type 1

diabetes rather than defining other diabetes types by histol-

ogy, and excluded cases that had a diabetes diagnosis of

monogenic diabetes or secondary causes of diabetes. The

clinical features of our non-type 1 diabetes group suggest that

this group is composed of predominantly type 2 diabetes,

however, there is much less consensus on the histology of

other diabetes types, including type 2 diabetes, and our

original model was designed with features that discriminate

type 1 from type 2 diabetes, such as age at diagnosis and

BMI. In the future it may be possible to develop an approach

that additionally classifies type 2 diabetes and less-common

diabetes types. This will require larger collections of non-

type 1 diabetes cases [27] to allow accurate characterization

of type 2 diabetes pancreatic features.

A notable limitation of our study is that the current

diagnostic model was developed using data derived primarily

from white Europeans between the ages of 18 and 50 years.

It is well documented that the incidence and prevalence of

type 1 and type 2 diabetes vary across demographic

subgroups [28,29]. It is also well accepted that the prior

prevalence of type 1 and type 2 diabetes varies with age, with

type 2 diabetes more likely to be diagnosed at older ages and

type 1 diabetes more likely to be diagnosed at younger ages.

Our cohort included 27% non-white Europeans and age at

diagnosis ranged from 1 to 73 years, yet despite this, the

model showed good discrimination and calibrated well

overall (Table S3). Owing to the limitations of the sample

size in our study, further validation evidence of the model

performance is still required in non-white Europeans, in

children, and in adults over the age of 50. It is likely that the

model will need to be further refined for these age groups.

Our analysis used some features that are unchanged at

diagnosis (age at diagnosis and T1D-GRS), but other features

that were recorded at the time of organ donation and could

theoretically have been different at the time of diagnosis

(autoantibody status, BMI). Despite this, both BMI and

autoantibodies were discriminative. We hypothesize that the

discriminative power of these two variables will only be

enhanced by ascertainment at the time of diagnosis, further

improvingmodel performance. It is possible that, at diagnosis,

a model with only three variables (e.g. age at diagnosis, BMI

and one of either autoantibodies or T1D-GRS) will perform as

well as a four-variable model. It will be impossible to test this

in studies of organ donors, but we are currently testing this in a

prospective study assessing clinical features and biomarkers at

the time of diagnosis (ClinicalTrials.gov identifier:

NCT03737799). Our sample size limited our ability to test

if a model using all four variables was significantly superior to

a model using either T1D-GRS or autoantibodies (Fig. S1C–

F). Existing work suggest a three-variable model with either

autoantibodies or T1D-GRS is as good as a model with four

variables [9,13]. It is likely that the relative benefits of

autoantibody testing (a routinely available clinical test that is

very discriminative if taken at diagnosis) [8] and T1D-GRS

(time-independent and freely available in population bio-

banks) [30] will see them used differently depending on the

setting and availability. We did not have some potentially

relevant features at diagnosis, such as the presence of

ketoacidosis and pre-diagnosis weight loss, but to date these

have not been shown to be reliable discriminators of type 1

diabetes [4]. However, it will require larger studies with

detailed information at diagnosis, across diverse ages and

ethnicities, to fully elucidate the most accurate method and

combination of features to classify diabetes at diagnosis.

Despite the modest sample size of our study, limited by the

numbers of organ donors available worldwide, our study

provides robust histological evidence that a model combining

clinical features and biomarkers offers improved discrimina-

tion of type 1 diabetes, and that progression to C-peptide
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deficiency is an appropriate surrogate endpoint. Our study

therefore provides further evidence for a clinical diagnostic

model having utility to identify type 1 diabetes in clinical

practice, and for C-peptide as a surrogate outcome for

clinical studies in which histological classification is not

possible. Overall the study strengthens the evidence that a

clinical diagnostic model may aid classification in clinical

practice.
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