52 research outputs found

    Do I Have My Attention? Speed of Processing Advantages for the Self-Face Are Not Driven by Automatic Attention Capture

    Get PDF
    We respond more quickly to our own face than to other faces, but there is debate over whether this is connected to attention-grabbing properties of the self-face. In two experiments, we investigate whether the self-face selectively captures attention, and the attentional conditions under which this might occur. In both experiments, we examined whether different types of face (self, friend, stranger) provide differential levels of distraction when processing self, friend and stranger names. In Experiment 1, an image of a distractor face appeared centrally – inside the focus of attention – behind a target name, with the faces either upright or inverted. In Experiment 2, distractor faces appeared peripherally – outside the focus of attention – in the left or right visual field, or bilaterally. In both experiments, self-name recognition was faster than other name recognition, suggesting a self-referential processing advantage. The presence of the self-face did not cause more distraction in the naming task compared to other types of face, either when presented inside (Experiment 1) or outside (Experiment 2) the focus of attention. Distractor faces had different effects across the two experiments: when presented inside the focus of attention (Experiment 1), self and friend images facilitated self and friend naming, respectively. This was not true for stranger stimuli, suggesting that faces must be robustly represented to facilitate name recognition. When presented outside the focus of attention (Experiment 2), no facilitation occurred. Instead, we report an interesting distraction effect caused by friend faces when processing strangers’ names. We interpret this as a “social importance” effect, whereby we may be tuned to pick out and pay attention to familiar friend faces in a crowd. We conclude that any speed of processing advantages observed in the self-face processing literature are not driven by automatic attention capture

    The Naked Truth: The Face and Body Sensitive N170 Response Is Enhanced for Nude Bodies

    Get PDF
    Recent event-related potential studies have shown that the occipitotemporal N170 component - best known for its sensitivity to faces - is also sensitive to perception of human bodies. Considering that in the timescale of evolution clothing is a relatively new invention that hides the bodily features relevant for sexual selection and arousal, we investigated whether the early N170 brain response would be enhanced to nude over clothed bodies. In two experiments, we measured N170 responses to nude bodies, bodies wearing swimsuits, clothed bodies, faces, and control stimuli (cars). We found that the N170 amplitude was larger to opposite and same-sex nude vs. clothed bodies. Moreover, the N170 amplitude increased linearly as the amount of clothing decreased from full clothing via swimsuits to nude bodies. Strikingly, the N170 response to nude bodies was even greater than that to faces, and the N170 amplitude to bodies was independent of whether the face of the bodies was visible or not. All human stimuli evoked greater N170 responses than did the control stimulus. Autonomic measurements and self-evaluations showed that nude bodies were affectively more arousing compared to the other stimulus categories. We conclude that the early visual processing of human bodies is sensitive to the visibility of the sex-related features of human bodies and that the visual processing of other people's nude bodies is enhanced in the brain. This enhancement is likely to reflect affective arousal elicited by nude bodies. Such facilitated visual processing of other people's nude bodies is possibly beneficial in identifying potential mating partners and competitors, and for triggering sexual behavior

    Is That Me or My Twin? Lack of Self-Face Recognition Advantage in Identical Twins

    Get PDF
    Despite the increasing interest in twin studies and the stunning amount of research on face recognition, the ability of adult identical twins to discriminate their own faces from those of their co-twins has been scarcely investigated. One’s own face is the most distinctive feature of the bodily self, and people typically show a clear advantage in recognizing their own face even more than other very familiar identities. Given the very high level of resemblance of their faces, monozygotic twins represent a unique model for exploring self-face processing. Herein we examined the ability of monozygotic twins to distinguish their own face from the face of their co-twin and of a highly familiar individual. Results show that twins equally recognize their own face and their twin’s face. This lack of self-face advantage was negatively predicted by how much they felt physically similar to their co-twin and by their anxious or avoidant attachment style. We speculate that in monozygotic twins, the visual representation of the self-face overlaps with that of the co-twin. Thus, to distinguish the self from the co-twin, monozygotic twins have to rely much more than control participants on the multisensory integration processes upon which the sense of bodily self is based. Moreover, in keeping with the notion that attachment style influences perception of self and significant others, we propose that the observed self/co-twin confusion may depend upon insecure attachment

    Mirror, mirror on the wall, how does my brain recognize my image at all?

    Get PDF
    For decades researchers have used mirrors to study self-recognition. However, attempts to identify neural processes underlying this ability have used photographs instead. Here we used event related potentials (ERPs) to compare self-face recognition in photographs versus mirrors and found distinct neural signatures. Measures of visual self-recognition are therefore not independent of the medium employed

    Different neural processes accompany self-recognition in photographs across the lifespan: an ERP study using dizygotic twins

    Get PDF
    Our appearance changes over time, yet we can recognize ourselves in photographs from across the lifespan. Researchers have extensively studied self-recognition in photographs and have proposed that specific neural correlates are involved, but few studies have examined self-recognition using images from different periods of life. Here we compared ERP responses to photographs of participants when they were 5-15, 16-25, and 26-45 years old. We found marked differences between the responses to photographs from these time periods in terms of the neural markers generally assumed to reflect (i) the configural processing of faces (i.e., the N170), (ii) the matching of the currently perceived face to a representation already stored in memory (i.e., the P250), and (iii) the retrieval of information about the person being recognized (i.e., the N400). There was no uniform neural signature of visual self-recognition. To test whether there was anything specific to self-recognition in these brain responses, we also asked participants to identify photographs of their dizygotic twins taken from the same time periods. Critically, this allowed us to minimize the confounding effects of exposure, for it is likely that participants have been similarly exposed to each other's faces over the lifespan. The same pattern of neural response emerged with only one exception: the neural marker reflecting the retrieval of mnemonic information (N400) differed across the lifespan for self but not for twin. These results, as well as our novel approach using twins and photographs from across the lifespan, have wide-ranging consequences for the study of self-recognition and the nature of our personal identity through time

    Self-face recognition is characterized by “bilateral gain” and by faster, more accurate performance which persists when faces are inverted

    No full text
    We examine interhemispheric cooperation in the recognition of personally known faces whose long-term familiarity ensures frequent co-activation of face-sensitive areas in the right and left brain. Images of self, friend, and stranger faces were presented for 150 ms in upright and inverted orientations both unilaterally, in the right or left visual field, and bilaterally. Consistent with previous research, we find a bilateral advantage for familiar but not for unfamiliar faces, and we demonstrate that this gain occurs for inverted as well as upright faces. We show that friend faces are recognized more quickly than unfamiliar faces in upright but not in inverted orientations, suggesting that configural processing underlies this particular advantage. Novel to this study is the finding that people are faster and more accurate at recognizing their own face over both stranger and friend faces and that these advantages occur for both upright and inverted faces. These findings are consistent with evidence for a bilateral representation of self-faces
    • 

    corecore