120 research outputs found
Particle deposition in a realistic geometry of the human conducting airways: Effects of inlet velocity profile, inhalation flowrate and electrostatic charge:Effects of inlet velocity profile, inhalation flowrate and electrostatic charge
AbstractUnderstanding the multitude of factors that control pulmonary deposition is important in assessing the therapeutic or toxic effects of inhaled particles. The use of increasingly sophisticated in silico models has improved our overall understanding, but model realism remains elusive. In this work, we use Large Eddy Simulations (LES) to investigate the deposition of inhaled aerosol particles with diameters of dp=0.1,0.5,1,2.5,5 and 10μm (particle density of 1200kg/m3). We use a reconstructed geometry of the human airways obtained via computed tomography and assess the effects of inlet flow conditions, particle size, electrostatic charge, and flowrate. While most computer simulations assume a uniform velocity at the mouth inlet, we found that using a more realistic inlet profile based on Laser Doppler Anemometry measurements resulted in enhanced deposition, mostly on the tongue. Nevertheless, flow field differences due to the inlet conditions are largely smoothed out just a short distance downstream of the mouth inlet as a result of the complex geometry. Increasing the inhalation flowrate from sedentary to activity conditions left the mean flowfield structures largely unaffected. Nevertheless, at the higher flowrates turbulent intensities persisted further downstream in the main bronchi. For dp>2.5μm, the overall Deposition Fractions (DF) increased with flowrate due to greater inertial impaction in the oropharynx. Below dp=1.0μm, the DF was largely independent of particle size; it also increased with flowrate, but remained significantly lower. Electrostatic charge increased the overall DF of smaller particles by as much as sevenfold, with most of the increase located in the mouth–throat. Moreover, significant enhancement in deposition was found in the left and right lung sub-regions of our reconstructed geometry. Although there was a relatively small impact of inhalation flowrate on the deposition of charged particles for sizes dp<2.5μm, impaction prevailed over electrostatic deposition for larger particles as the flowrate was increased. Overall, we report a significant interplay between particle size, electrostatic charge, and flowrate. Our results suggest that in silico models should be customized for specific applications, ensuring all relevant physical effects are accounted for in a self-consistent fashion
Core of the Magnetic Obstacle
Rich recirculation patterns have been recently discovered in the electrically
conducting flow subject to a local external magnetic termed "the magnetic
obstacle" [Phys. Rev. Lett. 98 (2007), 144504]. This paper continues the study
of magnetic obstacles and sheds new light on the core of the magnetic obstacle
that develops between magnetic poles when the intensity of the external field
is very large. A series of both 3D and 2D numerical simulations have been
carried out, through which it is shown that the core of the magnetic obstacle
is streamlined both by the upstream flow and by the induced cross stream
electric currents, like a foreign insulated insertion placed inside the
ordinary hydrodynamic flow. The closed streamlines of the mass flow resemble
contour lines of electric potential, while closed streamlines of the electric
current resemble contour lines of pressure. New recirculation patterns not
reported before are found in the series of 2D simulations. These are composed
of many (even number) vortices aligned along the spanwise line crossing the
magnetic gap. The intensities of these vortices are shown to vanish toward to
the center of the magnetic gap, confirming the general conclusion of 3D
simulations that the core of the magnetic obstacle is frozen. The implications
of these findings for the case of turbulent flow are discussed briefly.Comment: 14 pages, 9 figures, submitted to Journal of Turbulenc
On the analogy between streamlined magnetic and solid obstacles
Analogies are elaborated in the qualitative description of two systems: the
magnetohydrodynamic (MHD) flow moving through a region where an external local
magnetic field (magnetic obstacle) is applied, and the ordinary hydrodynamic
flow around a solid obstacle. The former problem is of interest both
practically and theoretically, and the latter one is a classical problem being
well understood in ordinary hydrodynamics. The first analogy is the formation
in the MHD flow of an impenetrable region -- core of the magnetic obstacle --
as the interaction parameter , i.e. strength of the applied magnetic field,
increases significantly. The core of the magnetic obstacle is streamlined both
by the upstream flow and by the induced cross stream electric currents, like a
foreign insulated insertion placed inside the ordinary hydrodynamic flow. In
the core, closed streamlines of the mass flow resemble contour lines of
electric potential, while closed streamlines of the electric current resemble
contour lines of pressure. The second analogy is the breaking away of attached
vortices from the recirculation pattern produced by the magnetic obstacle when
the Reynolds number , i.e. velocity of the upstream flow, is larger than a
critical value. This breaking away of vortices from the magnetic obstacle is
similar to that occurring past a real solid obstacle. Depending on the inlet
and/or initial conditions, the observed vortex shedding can be either symmetric
or asymmetric.Comment: minor changes, accepted for PoF, 26 pages, 7 figure
Antibiotic resistance genes in treated wastewater and in the receiving water bodies: a pan-European survey of urban settings
There is increasing public concern regarding the fate of antibiotic resistance genes (ARGs) during wastewater treatment, their persistence during the treatment process and their potential impacts on the receiving water bodies. In this study, we used quantitative PCR (qPCR) to determine the abundance of nine ARGs and a class 1 integron associated integrase gene in 16 wastewater treatment plant (WWTP) effluents from ten different European countries. In order to assess the impact on the receiving water bodies, gene abundances in the latter were also analysed. Six out of the nine ARGs analysed were detected in all effluent and river water samples. Among the quantified genes, intI1 and sul1 were the most abundant. Our results demonstrate that European WWTP contribute to the enrichment of the resistome in the receiving water bodies with the particular impact being dependent on the effluent load and local hydrological conditions. The ARGs concentrations in WWTP effluents were found to be inversely correlated to the number of implemented biological treatment steps, indicating a possible option for WWTP management. Furthermore, this study has identified bla as a possible resistance gene for future studies investigating the impact of WWTPs on their receiving water. [Abstract copyright: Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants
Microbial communities are responsible for biological wastewater treatment, but our knowledge of their diversity and function is still poor. Here, we sequence more than 5 million high-quality, full-length 16S rRNA gene sequences from 740 wastewater treatment plants (WWTPs) across the world and use the sequences to construct the ‘MiDAS 4’ database. MiDAS 4 is an amplicon sequence variant resolved, full-length 16S rRNA gene reference database with a comprehensive taxonomy from domain to species level for all sequences. We use an independent dataset (269 WWTPs) to show that MiDAS 4, compared to commonly used universal reference databases, provides a better coverage for WWTP bacteria and an improved rate of genus and species level classification. Taking advantage of MiDAS 4, we carry out an amplicon-based, global-scale microbial community profiling of activated sludge plants using two common sets of primers targeting regions of the 16S rRNA gene, revealing how environmental conditions and biogeography shape the activated sludge microbiota. We also identify core and conditionally rare or abundant taxa, encompassing 966 genera and 1530 species that represent approximately 80% and 50% of the accumulated read abundance, respectively. Finally, we show that for well-studied functional guilds, such as nitrifiers or polyphosphate-accumulating organisms, the same genera are prevalent worldwide, with only a few abundant species in each genus
Multi-year interlaboratory exercises for the analysis of illicit drugs and metabolites in wastewater:development of a quality control system
Thirty-seven laboratories from 25 countries present the development of an inter-laboratory testing scheme for the analysis of seven illicit drug residues in standard solutions, tap- and wastewater. Almost 10 000 concentration values were evaluated: triplicates of up to five samples and 26 laboratories per year. The setup was substantially improved with experiences gained across the six repetitions (e.g. matrix type, sample conditions, spiking levels). From this, (pre-)analytical issues (e.g. pH adjustment, filtration) were revealed for specific analytes which resulted in formulation of best-practice protocols for inter-laboratory setup and analytical procedures. The results illustrate the effectiveness of the inter-laboratory setup to assess laboratory performance in the framework of wastewater-based epidemiology. The exercise proved that measurements of laboratories were of high quality (>80% satisfactory results for six out of seven analytes) and that analytical follow-up is important to assist laboratories in improving robustness of wastewater-based epidemiology results
- …