536 research outputs found
Event Reconstruction in the PHENIX Central Arm Spectrometers
The central arm spectrometers for the PHENIX experiment at the Relativistic
Heavy Ion Collider have been designed for the optimization of particle
identification in relativistic heavy ion collisions. The spectrometers present
a challenging environment for event reconstruction due to a very high track
multiplicity in a complicated, focusing, magnetic field. In order to meet this
challenge, nine distinct detector types are integrated for charged particle
tracking, momentum reconstruction, and particle identification. The techniques
which have been developed for the task of event reconstruction are described.Comment: Accepted for publication in Nucl. Instrum. A. 34 pages, 23 figure
Centrality Dependence of Charged Particle Multiplicity in Au-Au Collisions at sqrt(s_NN)=130 GeV
We present results for the charged-particle multiplicity distribution at
mid-rapidity in Au - Au collisions at sqrt(s_NN)=130 GeV measured with the
PHENIX detector at RHIC. For the 5% most central collisions we find
. The results,
analyzed as a function of centrality, show a steady rise of the particle
density per participating nucleon with centrality.Comment: 307 authors, 43 institutions, 6 pages, 4 figures, 1 table Minor
changes to figure labels and text to meet PRL requirements. One author added:
M. Hibino of Waseda Universit
Recommended from our members
Production of π0 and η mesons in Cu+Au collisions at sNN =200 GeV
Production of π0 and η mesons has been measured at midrapidity in Cu+Au collisions at sNN=200GeV. Measurements were performed in π0(η)→γγ decay channel in the 1(2)-20GeV/c transverse momentum range. A strong suppression is observed for π0 and η meson production at high transverse momentum in central Cu+Au collisions relative to the p+p results scaled by the number of nucleon-nucleon collisions. In central collisions the suppression is similar to Au+Au with comparable nuclear overlap. The η/π0 ratio measured as a function of transverse momentum is consistent with mT-scaling parametrization down to pT=2GeV/c, its asymptotic value is constant and consistent with Au+Au and p+p and does not show any significant dependence on collision centrality. Similar results were obtained in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions as well as in e+e- collisions in a range of collision energies sNN=3-1800 GeV. This suggests that the quark-gluon-plasma medium produced in Cu+Cu collisions either does not affect the jet fragmentation into light mesons or it affects the π0 and η the same way
Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations
The jet fragmentation function is measured with direct photon-hadron
correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the
photon is an excellent approximation to the initial p_T of the jet and the
ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation
function. A statistical subtraction is used to extract the direct photon-hadron
yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_
AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates
modification of the jet fragmentation function. Suppression, most likely due to
energy loss in the medium, is seen at high z_T. The fragment yield at low z_T
is enhanced at large angles. Such a trend is expected from redistribution of
the lost energy into increased production of low-momentum particles.Comment: 562 authors, 70 insitutions, 8 pages, and 3 figures. Submitted to
Phys. Rev. Lett. v2 has minor changes to improve clarity. Plain text data
tables for the points plotted in figures for this and previous PHENIX
publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Mid-Rapidity Direct-Photon Production in p+p Collisions at sqrt(s) = 200 GeV
A measurement of direct photons in p+p collisions at sqrt(s)=200 GeV is
presented. A photon excess above background from pi^0 --> gamma+gamma, eta -->
gamma+gamma, and other decays is observed in the transverse momentum range 5.5
< p_T < 7 GeV/c. The result is compared to a next-to-leading-order perturbative
QCD calculation. Within errors, good agreement is found between the QCD
calculation and the measured result.Comment: 330 authors, 7 pages text, RevTeX, 2 figures, 2 tables. Submitted to
Physical Review D. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV
We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and
62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields
are presented as a function of both collision centrality and transverse
momentum. Nuclear modifications are obtained for central relative to peripheral
Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative
to scaled p+p cross sections obtained from other measurements (R_AA). The
observed suppression patterns at 39 and 62.4 GeV are quite similar to those
previously measured at 200 GeV. This similar suppression presents a challenge
to theoretical models that contain various competing mechanisms with different
energy dependencies, some of which cause suppression and others enhancement.Comment: 365 authors, 10 pages, 11 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Suppressed pi^0 Production at Large Transverse Momentum in Central Au+Au Collisions at sqrt(s_NN) = 200 GeV
Transverse momentum spectra of neutral pions in the range 1 < p_T < 10 GeV/c
have been measured at mid-rapidity by the PHENIX experiment at RHIC in Au+Au
collisions at sqrt(s_NN) = 200 GeV. The pi^0 multiplicity in central reactions
is significantly below the yields measured at the same sqrt(s_NN) in peripheral
Au+Au and p+p reactions scaled by the number of nucleon-nucleon collisions. For
the most central bin, the suppression factor is ~2.5 at p_T = 2 GeV/c and
increases to ~4-5 at p_T ~= 4 GeV/c. At larger p_T, the suppression remains
constant within errors. The deficit is already apparent in semi-peripheral
reactions and increases smoothly with centrality.Comment: 326 authors, 6 pages text, RevTeX, 3 figures, 2 tables. Submitted to
PRL. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …
