706 research outputs found

    Analysis of changes in climate and river discharge with focus on seasonal runoff predictability in the Aksu River Basin

    Get PDF
    The River Aksu is the principal tributary to the River Tarim, providing about three quarters of its discharge. It originates in Kyrgyzstan and flows into the arid areas of the Xinjiang Uyghur Autonomous Region in China, where an extensive irrigated agriculture has been developed in the river oases. The aim of the present contribution is to review the current trends in temperature, precipitation, and river discharge and links between these variables. The temperature in the region and the river discharge have been rising. Changes were studied using multiple trend analyses with different start and end years. Correlations between daily temperature and discharge are high and statistically significant for two headwater subcatchments of the Aksu for most of the time. However, there are episodes in late summer or beginning of autumn when correlations between temperature and discharge for the Xiehela station are absent. This can only be explained by Glacial Lake Outburst Floods from the Lake Merzbacher that are not routinely monitored. On an annual time scale, changes in summer discharge in the highly glacierized Xiehela subcatchment are dominated by changes in temperature. In contrast, in the subcatchment Shaliguilanke, variations in summer streamflow are more strongly influenced by variations in precipitation. A comparison of links between climatic variables and streamflow at different temporal scales is offered. Perspectives for seasonal forecasting are examined

    Localized inhibition of protein phosphatase 1 by NUAK1 promotes spliceosome activity and reveals a MYC-sensitive feedback control of transcription.

    Get PDF
    Deregulated expression of MYC induces a dependence on the NUAK1 kinase, but the molecular mechanisms underlying this dependence have not been fully clarified. Here, we show that NUAK1 is a predominantly nuclear protein that associates with a network of nuclear protein phosphatase 1 (PP1) interactors and that PNUTS, a nuclear regulatory subunit of PP1, is phosphorylated by NUAK1. Both NUAK1 and PNUTS associate with the splicing machinery. Inhibition of NUAK1 abolishes chromatin association of PNUTS, reduces spliceosome activity, and suppresses nascent RNA synthesis. Activation of MYC does not bypass the requirement for NUAK1 for spliceosome activity but significantly attenuates transcription inhibition. Consequently, NUAK1 inhibition in MYC-transformed cells induces global accumulation of RNAPII both at the pause site and at the first exon-intron boundary but does not increase mRNA synthesis. We suggest that NUAK1 inhibition in the presence of deregulated MYC traps non-productive RNAPII because of the absence of correctly assembled spliceosomes

    Twentieth century delta13C variability in surface water dissolved inorganic carbon recorded by coralline algae in the northern North Pacific Ocean and the Bering Sea

    Get PDF
    The oxygen isotopic composition and Mg/Ca ratios in the skeletons of long-lived coralline algae record ambient seawater temperature over time. Similarly, the carbon isotopic composition in the skeletons record δ13C values of ambient seawater dissolved inorganic carbon. Here, we measured δ13C in the coralline alga Clathromorphum nereostratum to test the feasibility of reconstructing the intrusion of anthropogenic CO2 into the northern North Pacific Ocean and Bering Sea. The δ13C was measured in the high Mg-calcite skeleton of three C. nereostratum specimens from two islands 500 km apart in the Aleutian archipelago. In the records spanning 1887 to 2003, the average decadal rate of decline in δ13C values increased from 0.03‰ yr−1 in the 1960s to 0.095‰ yr−1 in the 1990s, which was higher than expected due to solely the δ13C-Suess effect. Deeper water in this region exhibits higher concentrations of CO2 and low δ13C values. Transport of deeper water into surface water (i.e., upwelling) increases when the Aleutian Low is intensified. We hypothesized that the acceleration of the δ13C decline may result from increased upwelling from the 1960s to 1990s, which in turn was driven by increased intensity of the Aleutian Low. Detrended δ13C records also varied on 4–7 year and bidecadal timescales supporting an atmospheric teleconnection of tropical climate patterns to the northern North Pacific Ocean and Bering Sea manifested as changes in upwelling

    EC02-179 Managing Livestock Manure to Protect Environmental Quality

    Get PDF
    This book covers the land application part of manure management. With increasing regulations, the livestock producer needs to understand the scientific principles that affect manure transformations and how to use these principles to manage the manure for maximum fertilizer value with minimal environmental impact. Improved land application of manure is one part of the solution, but we suggest that the producer evaluate the quantity of nutrients arriving on the farm as feed, animals, and fertilizer compared to the total that is exported. Achieving a nutrient balance will reduce potential environmental hazards often associated with animal agriculture

    High-Yielding Corn Response to Applied Phosphorus, Potassium, and Sulfur in Nebraska

    Get PDF
    Nutrient management recommendations may change as yield levels and efficiency of crop production increase. Recommendations for P, K, and S were evaluated using results from 34 irrigated corn (Zea mays L.) trials conducted in diverse situations across Nebraska. The mean yield was 14.7 Mg ha-1 with adequate fertilizer applied. Th e median harvest index values were 0.52, 0.89, 0.15, and 0.56 for biomass, P, K, and S, respectively. Median grain yields were 372, 49, and 613 kg kg-1 of above-ground plant uptake of P, K, and S, respectively. The estimated critical Bray-1 P level for corn response to 20 kg P ha-1 was 20 mg kg-1 when the previous crop was corn compared with 10 mg kg-1 when corn followed soybean [Glycine max (L.) Merr.]. Soil test K was generally high with only three site-years kg-1. Over all trials, application of 40 kg K ha-1 resulted in a 0.2 Mg ha-1 mean grain yield decrease. Application of 22 kg S ha-1 did not result in significant yield increase in any trial. Soil test results accounted for twice as much variation in nutrient uptake when soil organic matter (SOM) and pH were considered in addition to the soil test nutrient values. The results indicate a need to revise the current recommendation for P, to maintain the current K and S recommendations, and to use SOM and pH in addition to soil test nutrient values in estimating applied nutrient requirements for irrigated high yield corn production

    High-Yielding Corn Response to Applied Phosphorus, Potassium, and Sulfur in Nebraska

    Get PDF
    Nutrient management recommendations may change as yield levels and efficiency of crop production increase. Recommendations for P, K, and S were evaluated using results from 34 irrigated corn (Zea mays L.) trials conducted in diverse situations across Nebraska. The mean yield was 14.7 Mg ha-1 with adequate fertilizer applied. Th e median harvest index values were 0.52, 0.89, 0.15, and 0.56 for biomass, P, K, and S, respectively. Median grain yields were 372, 49, and 613 kg kg-1 of above-ground plant uptake of P, K, and S, respectively. The estimated critical Bray-1 P level for corn response to 20 kg P ha-1 was 20 mg kg-1 when the previous crop was corn compared with 10 mg kg-1 when corn followed soybean [Glycine max (L.) Merr.]. Soil test K was generally high with only three site-years kg-1. Over all trials, application of 40 kg K ha-1 resulted in a 0.2 Mg ha-1 mean grain yield decrease. Application of 22 kg S ha-1 did not result in significant yield increase in any trial. Soil test results accounted for twice as much variation in nutrient uptake when soil organic matter (SOM) and pH were considered in addition to the soil test nutrient values. The results indicate a need to revise the current recommendation for P, to maintain the current K and S recommendations, and to use SOM and pH in addition to soil test nutrient values in estimating applied nutrient requirements for irrigated high yield corn production

    Diquat Derivatives: Highly Active, Two-Dimensional Nonlinear Optical Chromophores with Potential Redox Switchability

    Get PDF
    In this article, we present a detailed study of structure−activity relationships in diquaternized 2,2′-bipyridyl (diquat) derivatives. Sixteen new chromophores have been synthesized, with variations in the amino electron donor substituents, π-conjugated bridge, and alkyl diquaternizing unit. Our aim is to combine very large, two-dimensional (2D) quadratic nonlinear optical (NLO) responses with reversible redox chemistry. The chromophores have been characterized as their PF_6^− salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Their visible absorption spectra are dominated by intense π → π^* intramolecular charge-transfer (ICT) bands, and all show two reversible diquat-based reductions. First hyperpolarizabilities β have been measured by using hyper-Rayleigh scattering with an 800 nm laser, and Stark spectroscopy of the ICT bands affords estimated static first hyperpolarizabilities β_0. The directly and indirectly derived β values are large and increase with the extent of π-conjugation and electron donor strength. Extending the quaternizing alkyl linkage always increases the ICT energy and decreases the E_(1/2) values for diquat reduction, but a compensating increase in the ICT intensity prevents significant decreases in Stark-based β_0 responses. Nine single-crystal X-ray structures have also been obtained. Time-dependent density functional theory clarifies the molecular electronic/optical properties, and finite field calculations agree with polarized HRS data in that the NLO responses of the disubstituted species are dominated by ‘off-diagonal’ β_(zyy) components. The most significant findings of these studies are: (i) β_0 values as much as 6 times that of the chromophore in the technologically important material (E)-4′-(dimethylamino)-N-methyl-4-stilbazolium tosylate; (ii) reversible electrochemistry that offers potential for redox-switching of optical properties over multiple states; (iii) strongly 2D NLO responses that may be exploited for novel practical applications; (iv) a new polar material, suitable for bulk NLO behavior

    Evolution of Linear Absorption and Nonlinear Optical Properties in V-Shaped Ruthenium(II)-Based Chromophores

    Get PDF
    In this article, we describe a series of complexes with electron-rich cis-{Ru^(II)(NH_3)_4}^(2+) centers coordinated to two pyridyl ligands bearing N-methyl/arylpyridinium electron-acceptor groups. These V-shaped dipolar species are new, extended members of a class of chromophores first reported by us (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845−4859). They have been isolated as their PF_6− salts and characterized by using various techniques including ^1H NMR and electronic absorption spectroscopies and cyclic voltammetry. Reversible Ru^(III/II) waves show that the new complexes are potentially redox-switchable chromophores. Single crystal X-ray structures have been obtained for four complex salts; three of these crystallize noncentrosymmetrically, but with the individual molecular dipoles aligned largely antiparallel. Very large molecular first hyperpolarizabilities β have been determined by using hyper-Rayleigh scattering (HRS) with an 800 nm laser and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d → π^* metal-to-ligand charge-transfer (MLCT) and π → π^* intraligand charge-transfer (ILCT) bands. The latter measurements afford total nonresonant β_0 responses as high as ca. 600 × 10^(−30) esu. These pseudo-C_(2v) chromophores show two substantial components of the β tensor, β_(zzz) and β_(zyy), although the relative significance of these varies with the physical method applied. According to HRS, β_(zzz) dominates in all cases, whereas the Stark analyses indicate that β_(zyy) is dominant in the shorter chromophores, but β_(zzz) and β_(zyy) are similar for the extended species. In contrast, finite field calculations predict that β_(zyy) is always the major component. Time-dependent density functional theory calculations predict increasing ILCT character for the nominally MLCT transitions and accompanying blue-shifts of the visible absorptions, as the ligand π-systems are extended. Such unusual behavior has also been observed with related 1D complexes (Coe, B. J. et al. J. Am. Chem. Soc. 2004, 126, 3880−3891)

    Laser-controlled fluorescence in two-level systems

    Get PDF
    The ability to modify the character of fluorescent emission by a laser-controlled, optically nonlinear process has recently been shown theoretically feasible, and several possible applications have already been identified. In operation, a pulse of off-resonant probe laser beam, of sufficient intensity, is applied to a system exhibiting fluorescence, during the interval of excited- state decay following the initial excitation. The result is a rate of decay that can be controllably modified, the associated changes in fluorescence behavior affording new, chemically specific information. In this paper, a two-level emission model is employed in the further analysis of this all-optical process; the results should prove especially relevant to the analysis and imaging of physical systems employing fluorescent markers, these ranging from quantum dots to green fluorescence protein. Expressions are presented for the laser-controlled fluorescence anisotropy exhibited by samples in which the fluorophores are randomly oriented. It is also shown that, in systems with suitably configured electronic levels and symmetry properties, fluorescence emission can be produced from energy levels that would normally decay nonradiatively. © 2010 American Chemical Society

    Upper critical field, lower critical field and critical current density of FeTe0.60Se0.40 single crystal

    Full text link
    The transport and magnetic studies are performed on high quality FeTe0.60Se0.40 single crystals to determine the upper critical fields (Hc2), lower critical field (Hc1) and the Critical current density (Jc). The value of upper critical field Hc2 are very large, whereas the activation energy as determined from the slope of the Arrhenius plots are was found to be lower than that in the FeAs122 superconductor. The lower critical field was determined in ab direction and c direction of the crystal, and was found to have a anisotropy of 'gamma'{=(Hc1//c) / (Hc1//b)} ~ 4. The magnetic isotherms measured up to 12 Tesla shows the presence of fishtail behavior. The critical current densities at 1.8K of the single crystal was found to almost same in both ab and c direction as 1X105 Amp/cm2 in low field regime.Comment: 9 pages, 6 figure
    corecore