2,078 research outputs found

    Hubble Space Telescope Weak-lensing Study of the Galaxy Cluster XMMU J2235.3-2557 at z=1.4: A Surprisingly Massive Galaxy Cluster when the Universe is One-third of its Current Age

    Full text link
    We present a weak-lensing analysis of the z=1.4 galaxy cluster XMMU J2235.3-2557, based on deep Advanced Camera for Surveys images. Despite the observational challenge set by the high redshift of the lens, we detect a substantial lensing signal at the >~ 8 sigma level. This clear detection is enabled in part by the high mass of the cluster, which is verified by our both parametric and non-parametric estimation of the cluster mass. Assuming that the cluster follows a Navarro-Frenk-White mass profile, we estimate that the projected mass of the cluster within r=1 Mpc is (8.5+-1.7) x 10^14 solar mass, where the error bar includes the statistical uncertainty of the shear profile, the effect of possible interloping background structures, the scatter in concentration parameter, and the error in our estimation of the mean redshift of the background galaxies. The high X-ray temperature 8.6_{-1.2}^{+1.3} keV of the cluster recently measured with Chandra is consistent with this high lensing mass. When we adopt the 1-sigma lower limit as a mass threshold and use the cosmological parameters favored by the Wilkinson Microwave Anisotropy Probe 5-year (WMAP5) result, the expected number of similarly massive clusters at z >~ 1.4 in the 11 square degree survey is N ~ 0.005. Therefore, the discovery of the cluster within the survey volume is a rare event with a probability < 1%, and may open new scenarios in our current understanding of cluster formation within the standard cosmological model.Comment: Accepted to ApJ for publication. 40 pages and 14 figure

    The Hubble Constant determined through an inverse distance ladder including quasar time delays and Type Ia supernovae

    Full text link
    Context. The precise determination of the present-day expansion rate of the Universe, expressed through the Hubble constant H0H_0, is one of the most pressing challenges in modern cosmology. Assuming flat Λ\LambdaCDM, H0H_0 inference at high redshift using cosmic-microwave-background data from Planck disagrees at the 4.4σ\sigma level with measurements based on the local distance ladder made up of parallaxes, Cepheids and Type Ia supernovae (SNe Ia), often referred to as "Hubble tension". Independent, cosmological-model-insensitive ways to infer H0H_0 are of critical importance. Aims. We apply an inverse-distance-ladder approach, combining strong-lensing time-delay-distance measurements with SN Ia data. By themselves, SNe Ia are merely good relative distance indicators, but by anchoring them to strong gravitational lenses one can obtain an H0H_0 measurement that is relatively insensitive to other cosmological parameters. Methods. A cosmological parameter estimate is performed for different cosmological background models, both for strong-lensing data alone and for the combined lensing + SNe Ia data sets. Results. The cosmological-model dependence of strong-lensing H0H_0 measurements is significantly mitigated through the inverse distance ladder. In combination with SN Ia data, the inferred H0H_0 consistently lies around 73-74 km s−1^{-1} Mpc−1^{-1}, regardless of the assumed cosmological background model. Our results agree nicely with those from the local distance ladder, but there is a >2σ\sigma tension with Planck results, and a ~1.5σ\sigma discrepancy with results from an inverse distance ladder including Planck, Baryon Acoustic Oscillations and SNe Ia. Future strong-lensing distance measurements will reduce the uncertainties in H0H_0 from our inverse distance ladder.Comment: 5 pages, 3 figures, A&A letters accepted versio

    Scaling Relations and Overabundance of Massive Clusters at z>~1 from Weak-Lensing Studies with HST

    Get PDF
    We present weak gravitational lensing analysis of 22 high-redshift (z >~1) clusters based on Hubble Space Telescope images. Most clusters in our sample provide significant lensing signals and are well detected in their reconstructed two-dimensional mass maps. Combining the current results and our previous weak-lensing studies of five other high-z clusters, we compare gravitational lensing masses of these clusters with other observables. We revisit the question whether the presence of the most massive clusters in our sample is in tension with the current LambdaCDM structure formation paradigm. We find that the lensing masses are tightly correlated with the gas temperatures and establish, for the first time, the lensing mass-temperature relation at z >~ 1. For the power law slope of the M-TX relation (M propto T^{\alpha}), we obtain \alpha=1.54 +/- 0.23. This is consistent with the theoretical self-similar prediction \alpha=3/2 and with the results previously reported in the literature for much lower redshift samples. However, our normalization is lower than the previous results by 20-30%, indicating that the normalization in the M-TX relation might evolve. After correcting for Eddington bias and updating the discovery area with a more conservative choice, we find that the existence of the most massive clusters in our sample still provides a tension with the current Lambda CDM model. The combined probability of finding the four most massive clusters in this sample after marginalization over current cosmological parameters is less than 1%.Comment: ApJ in press. See http://www.supernova.lbl.gov for additional information pertaining to the HST Cluster SN Surve

    Prostaglandin E2 Adds Bone to a Cancellous Bone Site with a Closed Growth Plate and Low Bone Turnover in Ovariectomized Rats

    Get PDF
    The objects of this study were to determine the responses of a cancellous bone site with a closed growth plate, (the distal tibial metaphysis (DTM), to ovariectomy (OVX) and OVX plus a prostaglandin E(2) treatment, and compare the site's response to previous findings reported for another site, the proximal tibial metaphysis (PTM). Thirty five 3-month old female Sprague-Dawley rats were divided into five groups; basal, sham OVX, and OVX+0, +1, or +6 mg PGE(2)/kg/d injected subcutaneously for 3 months and given double fluorescent labels before sacrifice. Cancellous bone histomorphometric analyses were performed on 20 micrometer thick undecalcified DTM sections. Similar to the PTM, the DTM showed age-related decreases in bone formation and increases in bone resorption, but it differed in that at 3 months POST OVX there was neither bone loss nor changes in formation endpoints. Giving 1 mg PGE(2)/kg/d to OVX rats prevented most age-related changes and maintained the bone formation histomorphometry near basal levels. Treating OVX rats with 6 mg PGE(2)/kd/d prevented age-related bone changes, added extra bone, and improved microanatomical structure by stimulating bone formation, without altering bone resportion. Futhermore, After PGE(2) admimnistration, the DTM, a cancellous bone site with a closed growth plate, increased bone formation more than did the cancellous bone in the PTM

    HST/Acs Weak-Lensing and Chandra X-Ray Studies of the High-Redshift Cluster MS 1054-0321

    Full text link
    We present Hubble Space Telescope/Advanced Camera for Surveys (ACS) weak-lensing and Chandra X-ray analyses of MS 1054-0321 at z=0.83, the most distant and X-ray luminous cluster in the Einstein Extended Medium-Sensitivity Survey (EMSS). The high-resolution mass reconstruction through ACS weak-lensing reveals the complicated dark matter substructure in unprecedented detail, characterized by the three dominant mass clumps with the four or more minor satellite groups within the current ACS field. The direct comparison of the mass map with the Chandra X-ray image shows that the eastern weak-lensing substructure is not present in the X-ray image and, more interestingly, the two X-ray peaks are displaced away from the hypothesized merging direction with respect to the corresponding central and western mass clumps, possibly because of ram pressure. In addition, as observed in our previous weak-lensing study of another high-redshift cluster CL 0152-1357 at z=0.84, the two dark matter clumps of MS 1054-0321 seem to be offset from the galaxy counterparts. We examine the significance of these offsets and discuss a possible scenario, wherein the dark matter clumps might be moving ahead of the cluster galaxies. The non-parametric weak-lensing mass modeling gives a projected mass of M(r<1 Mpc)=(1.02+-0.15)x 10^{15} solar mass, where the uncertainty reflects both the statistical error and the cosmic shear effects. Our temperature measurement of T=8.9_{-0.8}^{+1.0} keV utilizing the newest available low-energy quantum efficiency degradation prescription for the Chandra instrument, together with the isothermal beta description of the cluster (r_c=16"+-15" and beta=0.78+-0.08), yields a projected mass of M(r<1 Mpc)=(1.2+-0.2) x 10^{15} solar mass, consistent with the weak-lensing result.Comment: Accepted for publication in apj. Full-resolution version can be downloaded from http://acs.pha.jhu.edu/~mkjee/ms1054.pd

    Remineralization of demineralized dentin using a dual analog system.

    Get PDF
    ObjectiveImproved methods are needed to remineralize dentin caries in order to promote conservation of dentin tissue and minimize the surgical interventions that are currently required for clinical treatment. Here, we test the hypothesis that bulk substrates can be effectively mineralized via a dual analog system proposed by others, using a tripolyphosphate (TPP) "templating analog" and a poly(acrylic acid) (PAA) or poly(aspartic acid) (pAsp) "sequestration analog," the latter of which generates the polymer-induced liquid-precursor (PILP) mineralization process studied in our laboratory.Material &amp; methodsDemineralized human dentin slices were remineralized with and without pre-treatment with TPP, using either PAA or pAsp as the PILP process-directing agent. A control experiment with no polymer present was used for comparison.ResultsNo mineralization was observed in any of the PAA groups. In both the pAsp and no polymer groups, TPP inhibited mineralization on the surfaces of the specimens but promoted mineralization within the interiors. Pre-treatment with TPP enhanced overall mineralization of the pAsp group. However, when analysed via TEM, regions with little mineral were still present.ConclusionPoly(acrylic acid) was unable to remineralize demineralized dentin slices under the conditions employed, even when pre-treated with TPP. However, pre-treatment with TPP enhanced overall mineralization of specimens that were PILP-remineralized using pAsp

    Towards Precision LSST Weak-Lensing Measurement - I: Impacts of Atmospheric Turbulence and Optical Aberration

    Full text link
    The weak-lensing science of the LSST project drives the need to carefully model and separate the instrumental artifacts from the intrinsic lensing signal. The dominant source of the systematics for all ground based telescopes is the spatial correlation of the PSF modulated by both atmospheric turbulence and optical aberrations. In this paper, we present a full FOV simulation of the LSST images by modeling both the atmosphere and the telescope optics with the most current data for the telescope specifications and the environment. To simulate the effects of atmospheric turbulence, we generated six-layer phase screens with the parameters estimated from the on-site measurements. For the optics, we combined the ray-tracing tool ZEMAX and our simulated focal plane data to introduce realistic aberrations and focal plane height fluctuations. Although this expected flatness deviation for LSST is small compared with that of other existing cameras, the fast f-ratio of the LSST optics makes this focal plane flatness variation and the resulting PSF discontinuities across the CCD boundaries significant challenges in our removal of the systematics. We resolve this complication by performing PCA CCD-by-CCD, and interpolating the basis functions using conventional polynomials. We demonstrate that this PSF correction scheme reduces the residual PSF ellipticity correlation below 10^-7 over the cosmologically interesting scale. From a null test using HST/UDF galaxy images without input shear, we verify that the amplitude of the galaxy ellipticity correlation function, after the PSF correction, is consistent with the shot noise set by the finite number of objects. Therefore, we conclude that the current optical design and specification for the accuracy in the focal plane assembly are sufficient to enable the control of the PSF systematics required for weak-lensing science with the LSST.Comment: Accepted to PASP. High-resolution version is available at http://dls.physics.ucdavis.edu/~mkjee/LSST_weak_lensing_simulation.pd

    Non-parametric strong lens inversion of Cl~0024+1654: illustrating the monopole degeneracy

    Get PDF
    The cluster lens Cl 0024+1654 is undoubtedly one of the most beautiful examples of strong gravitational lensing, providing five large images of a single source with well-resolved substructure. Using the information contained in the positions and the shapes of the images, combined with the null space information, a non-parametric technique is used to infer the strong lensing mass map of the central region of this cluster. This yields a strong lensing mass of 1.60x10^14 M_O within a 0.5' radius around the cluster center. This mass distribution is then used as a case study of the monopole degeneracy, which may be one of the most important degeneracies in gravitational lensing studies and which is extremely hard to break. We illustrate the monopole degeneracy by adding circularly symmetric density distributions with zero total mass to the original mass map of Cl 0024+1654. These redistribute mass in certain areas of the mass map without affecting the observed images in any way. We show that the monopole degeneracy and the mass-sheet degeneracy together lie at the heart of the discrepancies between different gravitational lens reconstructions that can be found in the literature for a given object, and that many images/sources, with an overall high image density in the lens plane, are required to construct an accurate, high-resolution mass map based on strong-lensing data.Comment: 9 pages, accepted for publication by MNRA

    Exploring Dark Energy with Next-Generation Photometric Redshift Surveys

    Get PDF
    The coming decade will be an exciting period for dark energy research, during which astronomers will address the question of what drives the accelerated cosmic expansion as first revealed by type Ia supernova (SN) distances, and confirmed by later observations. The mystery of dark energy poses a challenge of such magnitude that, as stated by the Dark Energy Task Force (DETF), nothing short of a revolution in our understanding of fundamental physics will be required to achieve a full understanding of the cosmic acceleration. The lack of multiple complementary precision observations is a major obstacle in developing lines of attack for dark energy theory. This lack is precisely what next-generation surveys will address via the powerful techniques of weak lensing (WL) and baryon acoustic oscillations (BAO) -- galaxy correlations more generally -- in addition to SNe, cluster counts, and other probes of geometry and growth of structure. Because of their unprecedented statistical power, these surveys demand an accurate understanding of the observables and tight control of systematics. This white paper highlights the opportunities, approaches, prospects, and challenges relevant to dark energy studies with wide-deep multiwavelength photometric redshift surveys. Quantitative predictions are presented for a 20000 sq. deg. ground-based 6-band (ugrizy) survey with 5-sigma depth of r~27.5, i.e., a Stage 4 survey as defined by the DETF

    Specific Heat of Ce(1-x)La(x)RhIn(5) in Zero and Applied Magnetic Field: A Very Rich Phase Diagram

    Full text link
    Specific heat and magnetization results as a function of field on single- and poly-crystalline samples of Ce(1-x)La(x)RhIn(5) show 1.) a specific heat gamma of about 100 mJ/moleK^2 (in agreement with recent dHvA results of Alvers et al.); 2.) upturns at low temperatures in C/T and chi that fit a power law behavior ( Griffiths phase non-Fermi liquid behavior); 3.) a field induced anomaly in C/T as well as M vs H behavior in good agreement with the recent Griffiths phase theory of Castro Neto and Jones, where M~H at low field, M ~ H^lambda above a crossover field, C/T ~ T^(-1+lambda) at low field, and C/T ~ (H^(2+lambda/2)/T^(3-lambda/2))*exp(-mu(eff)H/T) above the same crossover field as determined in the magnetization and where lambda is independently determined from the temperature dependence of chi at low temperatures, chi ~ T^(-1+lambda) and low fields.Comment: 13 pages, 9 figures, to be published in Physical Review
    • 

    corecore