1,258 research outputs found
Eigenvalue Distributions for a Class of Covariance Matrices with Applications to Bienenstock-Cooper-Munro Neurons Under Noisy Conditions
We analyze the effects of noise correlations in the input to, or among, BCM
neurons using the Wigner semicircular law to construct random,
positive-definite symmetric correlation matrices and compute their eigenvalue
distributions. In the finite dimensional case, we compare our analytic results
with numerical simulations and show the effects of correlations on the
lifetimes of synaptic strengths in various visual environments. These
correlations can be due either to correlations in the noise from the input LGN
neurons, or correlations in the variability of lateral connections in a network
of neurons. In particular, we find that for fixed dimensionality, a large noise
variance can give rise to long lifetimes of synaptic strengths. This may be of
physiological significance.Comment: 7 pages, 7 figure
Study protocol: developing a decision system for inclusive housing: applying a systematic, mixed-method quasi-experimental design
Background Identifying the housing preferences of people with complex disabilities is a much needed, but under-developed area of practice and scholarship. Despite the recognition that housing is a social determinant of health and quality of life, there is an absence of empirical methodologies that can practically and systematically involve consumers in this complex service delivery and housing design market. A rigorous process for making effective and consistent development decisions is needed to ensure resources are used effectively and the needs of consumers with complex disability are properly met. Methods/Design This 3-year project aims to identify how the public and private housing market in Australia can better respond to the needs of people with complex disabilities whilst simultaneously achieving key corporate objectives. First, using the Customer Relationship Management framework, qualitative (Nominal Group Technique) and quantitative (Discrete Choice Experiment) methods will be used to quantify the housing preferences of consumers and their carers. A systematic mixed-method, quasi-experimental design will then be used to quantify the development priorities of other key stakeholders (e.g., architects, developers, Government housing services etc.) in relation to inclusive housing for people with complex disabilities. Stakeholders randomly assigned to Group 1 (experimental group) will participate in a series of focus groups employing Analytical Hierarchical Process (AHP) methodology. Stakeholders randomly assigned to Group 2 (control group) will participate in focus groups employing existing decision making processes to inclusive housing development (e.g., Risk, Opportunity, Cost, Benefit considerations). Using comparative stakeholder analysis, this research design will enable the AHP methodology (a proposed tool to guide inclusive housing development decisions) to be tested. Discussion It is anticipated that the findings of this study will enable stakeholders to incorporate consumer housing preferences into commercial decisions. Housing designers and developers will benefit from the creation of a parsimonious set of consumer-led housing preferences by which to make informed investments in future housing and contribute to future housing policy. The research design has not been applied in the Australian research context or elsewhere, and will provide a much needed blueprint for market investment to develop viable, consumer directed inclusive housing options for people with complex disability
Coordinated optimization of visual cortical maps (II) Numerical studies
It is an attractive hypothesis that the spatial structure of visual cortical
architecture can be explained by the coordinated optimization of multiple
visual cortical maps representing orientation preference (OP), ocular dominance
(OD), spatial frequency, or direction preference. In part (I) of this study we
defined a class of analytically tractable coordinated optimization models and
solved representative examples in which a spatially complex organization of the
orientation preference map is induced by inter-map interactions. We found that
attractor solutions near symmetry breaking threshold predict a highly ordered
map layout and require a substantial OD bias for OP pinwheel stabilization.
Here we examine in numerical simulations whether such models exhibit
biologically more realistic spatially irregular solutions at a finite distance
from threshold and when transients towards attractor states are considered. We
also examine whether model behavior qualitatively changes when the spatial
periodicities of the two maps are detuned and when considering more than 2
feature dimensions. Our numerical results support the view that neither minimal
energy states nor intermediate transient states of our coordinated optimization
models successfully explain the spatially irregular architecture of the visual
cortex. We discuss several alternative scenarios and additional factors that
may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with
arXiv:1102.335
Lyapunov instability of fluids composed of rigid diatomic molecules
We study the Lyapunov instability of a two-dimensional fluid composed of
rigid diatomic molecules, with two interaction sites each, and interacting with
a WCA site-site potential. We compute full spectra of Lyapunov exponents for
such a molecular system. These exponents characterize the rate at which
neighboring trajectories diverge or converge exponentially in phase space.
Quam. These exponents characterize the rate at which neighboring trajectories
diverge or converge exponentially in phase space. Qualitative different degrees
of freedom -- such as rotation and translation -- affect the Lyapunov spectrum
differently. We study this phenomenon by systematically varying the molecular
shape and the density. We define and evaluate ``rotation numbers'' measuring
the time averaged modulus of the angular velocities for vectors connecting
perturbed satellite trajectories with an unperturbed reference trajectory in
phase space. For reasons of comparison, various time correlation functions for
translation and rotation are computed. The relative dynamics of perturbed
trajectories is also studied in certain subspaces of the phase space associated
with center-of-mass and orientational molecular motion.Comment: RevTeX 14 pages, 7 PostScript figures. Accepted for publication in
Phys. Rev.
Homeostasis of mitochondrial Ca<sup>2+</sup> stores is critical for signal amplification in Drosophila melanogaster olfactory sensory neurons
SIMPLE SUMMARY: The evolution of flight imposed new challenges on insects when locating and identifying food sources, mates, or enemies. As an adaptation, flying insects developed a remarkably sensitive olfactory system to detect faint odor traces. This ability is linked to the olfactory receptor class of odorant receptors, which are found in insect olfactory sensory neurons. In a subgroup of these neurons, sensitivity can be further enhanced through a process called sensitization. Extracellular calcium ions, calmodulin, and protein kinase C are known to be key factors in this process. While manipulation of mitochondrial calcium im- and export has been shown to influence odor responses in general, the connection of intracellular calcium stores to sensitization has so far been only speculative. Using two pharmacological approaches, we disrupted mitochondrial calcium management in order to explore its importance to sensitization. Overall, our findings reveal that mitochondrial calcium stores are important players in the complex intracellular signaling pathways required for sensitization. ABSTRACT: Insects detect volatile chemosignals with olfactory sensory neurons (OSNs) that express olfactory receptors. Among them, the most sensitive receptors are the odorant receptors (ORs), which form cation channels passing Ca(2+). OSNs expressing different groups of ORs show varying optimal odor concentration ranges according to environmental needs. Certain types of OSNs, usually attuned to high odor concentrations, allow for the detection of even low signals through the process of sensitization. By increasing the sensitivity of OSNs upon repetitive subthreshold odor stimulation, Drosophila melanogaster can detect even faint and turbulent odor traces during flight. While the influx of extracellular Ca(2+) has been previously shown to be a cue for sensitization, our study investigates the importance of intracellular Ca(2+) management. Using an open antenna preparation that allows observation and pharmacological manipulation of OSNs, we performed Ca(2+) imaging to determine the role of Ca(2+) storage in mitochondria. By disturbing the mitochondrial resting potential and induction of the mitochondrial permeability transition pore (mPTP), we show that effective storage of Ca(2+) in the mitochondria is vital for sensitization to occur, and release of Ca(2+) from the mitochondria to the cytoplasm promptly abolishes sensitization. Our study shows the importance of cellular Ca(2+) management for sensitization in an effort to better understand the underlying mechanics of OSN modulation
P10-10. HIV-1 Gag virus like particles pseudotyped with CD40 ligand to stimulate innate immune responses
ISSN:1742-469
Recommended from our members
Modifiable predictors of depression following childhood maltreatment: a systematic review and meta-analysis
Although maltreatment experiences in childhood increase the risk for depression, not all maltreated children become depressed. This review aims to systematically examine the existing literature to identify modifiable factors that increase vulnerability to, or act as a buffer against, depression, and could therefore inform the development of targeted interventions. Thirteen databases (including Medline, PsychINFO, SCOPUS) were searched (between 1984 and 2014) for prospective, longitudinal studies published in English that included at least 300 participants and assessed associations between childhood maltreatment and later depression. The study quality was assessed using an adapted Newcastle-Ottawa Scale checklist. Meta-analyses (random effects models) were performed on combined data to estimate the effect size of the association between maltreatment and depression. Meta-regressions were used to explore effects of study size and quality. We identified 22 eligible articles (N=12 210 participants), of which 6 examined potential modifiable predictors of depression following maltreatment. No more than two studies examined the same modifiable predictor; therefore, it was not possible to examine combined effects of modifiable predictors with meta-regression. It is thus difficult to draw firm conclusions from this study, but initial findings indicate that interpersonal relationships, cognitive vulnerabilities and behavioral difficulties may be modifiable predictors of depression following maltreatment. There is a lack of well-designed, prospective studies on modifiable predictors of depression following maltreatment. A small amount of initial research suggests that modifiable predictors of depression may be specific to maltreatment subtypes and gender. Corroboration and further investigation of causal mechanisms is required to identify novel targets for intervention, and to inform guidelines for the effective treatment of maltreated children
Design principles in housing for people with complex physical and cognitive disability: towards an integrated framework for practice
To develop a research-based environmental framework to guide the design and construction of suitable residential dwellings for individuals with complex disability. An environmental approach to housing design and development recognises that there are physical, psychological and social components relating to housing design, dwelling location and the neighbourhood context, and that these elements interact to affect the physical, psychological, and social wellness of individuals. Following theoretical review and synthesis, a comprehensive set of design features that are conducive to residents’ wellness and quality of life are described. It is clear that housing design and development for people with complex disability ought to consider the physical, social, natural, symbolic, and care environment in relation to housing design, dwelling location, and the neighbourhood context for improved housing outcomes. An integrated housing design and development framework is presented. It is hoped this practical matrix/evaluative tool will inform future inclusive housing design and development decisions in Australia and internationally. The application of this framework is especially relevant to political climates striving to achieve design innovation to increase housing choice for people with complex disability
- …
