314 research outputs found

    Four-point probe measurements using current probes with voltage feedback to measure electric potentials

    Full text link
    We present a four-point probe resistance measurement technique which uses four equivalent current measuring units, resulting in minimal hardware requirements and corresponding sources of noise. Local sample potentials are measured by a software feedback loop which adjusts the corresponding tip voltage such that no current flows to the sample. The resulting tip voltage is then equivalent to the sample potential at the tip position. We implement this measurement method into a multi-tip scanning tunneling microscope setup such that potentials can also be measured in tunneling contact, allowing in principle truly non-invasive four-probe measurements. The resulting measurement capabilities are demonstrated for BiSbTe3_3 and Si(111)(7×7)(111)-(7\times7) samples

    Magic Islands and Barriers to Attachment: A Si/Si(111)7x7 Growth Model

    Get PDF
    Surface reconstructions can drastically modify growth kinetics during initial stages of epitaxial growth as well as during the process of surface equilibration after termination of growth. We investigate the effect of activation barriers hindering attachment of material to existing islands on the density and size distribution of islands in a model of homoepitaxial growth on Si(111)7x7 reconstructed surface. An unusual distribution of island sizes peaked around "magic" sizes and a steep dependence of the island density on the growth rate are observed. "Magic" islands (of a different shape as compared to those obtained during growth) are observed also during surface equilibration.Comment: 4 pages including 5 figures, REVTeX, submitted to Physical Review

    Etched graphene quantum dots on hexagonal boron nitride

    Get PDF
    We report on the fabrication and characterization of etched graphene quantum dots (QDs) on hexagonal boron nitride (hBN) and SiO2 with different island diameters. We perform a statistical analysis of Coulomb peak spacings over a wide energy range. For graphene QDs on hBN, the standard deviation of the normalized peak spacing distribution decreases with increasing QD diameter, whereas for QDs on SiO2 no diameter dependency is observed. In addition, QDs on hBN are more stable under the influence of perpendicular magnetic fields up to 9T. Both results indicate a substantially reduced substrate induced disorder potential in graphene QDs on hBN

    Bowling for Fascism: Social Capital and the Rise of the Nazi Party

    Get PDF
    Using newly collected data on association density in 229 towns and cities in interwar Germany, we show that denser social networks were associated with faster entry into the Nazi Party. The effect is large: one standard deviation higher association density is associated with at least 15 percent faster Nazi Party entry. Party membership, in turn, predicts electoral success. Social networks thus aided the rise of the Nazis that destroyed Germany’s first democracy. The effects of social capital depended on the political context: in federal states with more stable governments, higher association density was not correlated with faster Nazi Party entry

    Structure of self-organized Fe clusters grown on Au(111) analyzed by Grazing Incidence X-Ray Diffraction

    Full text link
    We report a detailed investigation of the first stages of the growth of self-organized Fe clusters on the reconstructed Au(111) surface by grazing incidence X-ray diffraction. Below one monolayer coverage, the Fe clusters are in "local epitaxy" whereas the subsequent layers adopt first a strained fcc lattice and then a partly relaxed bcc(110) phase in a Kurdjumov-Sachs epitaxial relationship. The structural evolution is discussed in relation with the magnetic properties of the Fe clusters.Comment: 7 pages, 6 figures, submitted to Physical Review B September 200

    Surface roughness during depositional growth and sublimation of ice crystals

    Get PDF
    Full version of an earlier discussion paper (Chou et al. 2018)Ice surface properties can modify the scattering properties of atmospheric ice crystals and therefore affect the radiative properties of mixed-phase and cirrus clouds. The Ice Roughness Investigation System (IRIS) is a new laboratory setup designed to investigate the conditions under which roughness develops on single ice crystals, based on their size, morphology and growth conditions (relative humidity and temperature). Ice roughness is quantified through the analysis of speckle in 2-D light-scattering patterns. Characterization of the setup shows that a supersaturation of 20 % with respect to ice and a temperature at the sample position as low as-40 °C could be achieved within IRIS. Investigations of the influence of humidity show that higher supersaturations with respect to ice lead to enhanced roughness and irregularities of ice crystal surfaces. Moreover, relative humidity oscillations lead to gradual ratcheting-up of roughness and irregularities, as the crystals undergo repeated growth-sublimation cycles. This memory effect also appears to result in reduced growth rates in later cycles. Thus, growth history, as well as supersaturation and temperature, influences ice crystal growth and properties, and future atmospheric models may benefit from its inclusion in the cloud evolution process and allow more accurate representation of not just roughness but crystal size too, and possibly also electrification properties.Peer reviewe

    Atomistic mechanisms for the ordered growth of Co nano-dots on Au(788): comparison of VT-STM experiments and multi-scaled calculations

    Get PDF
    Hetero-epitaxial growth on a strain-relief vicinal patterned substrate has revealed unprecedented 2D long range ordered growth of uniform cobalt nanostructures. The morphology of a Co sub-monolayer deposit on a Au(111) reconstructed vicinal surface is analyzed by Variable Temperature Scanning Tunneling Microscopy (VT-STM) experiments. A rectangular array of nano-dots (3.8 nm x 7.2 nm) is found for a particularly large deposit temperature range lying from 60 K to 300 K. Although the nanodot lattice is stable at room temperature, this paper focus on the early stage of ordered nucleation and growth at temperatures between 35 K and 480 K. The atomistic mechanisms leading to the nanodots array are elucidated by comparing statistical analysis of VT-STM images with multi-scaled numerical calculations combining both Molecular Dynamics for the quantitative determination of the activation energies for the atomic motion and the Kinetic Monte Carlo method for the simulations of the mesoscopic time and scale evolution of the Co submonolayer

    How Merchant Towns Shaped Parliaments: From the Norman Conquest of England to the Great Reform Act

    Get PDF
    This is the final version. Available from the American Economic Association via the DOI in this recordWe study the emergence of urban self-governance in the late medieval period. We focus on England after the Norman Conquest of 1066, building a novel comprehensive dataset of 554 medieval towns. During the Commercial Revolution (twelfth to thirteenth centuries), many merchant towns obtained Farm Grants: the right of self-governed tax collection and law enforcement. Self-governance, in turn, was a stepping stone for parliamentary representation: Farm Grant towns were much more likely to be summoned directly to the medieval English Parliament than otherwise similar towns. We also show that self-governed towns strengthened the role of Parliament and shaped national institutions over the subsequent centuries

    Heterogeneous ice nucleation: exploring the transition from stochastic to singular freezing behavior

    Get PDF
    Heterogeneous ice nucleation, a primary pathway for ice formation in the atmosphere, has been described alternately as being stochastic, in direct analogy with homogeneous nucleation, or singular, with ice nuclei initiating freezing at deterministic temperatures. We present an idealized, conceptual model to explore the transition between stochastic and singular ice nucleation. This "soccer ball" model treats particles as being covered with surface sites (patches of finite area) characterized by different nucleation barriers, but with each surface site following the stochastic nature of ice embryo formation. The model provides a phenomenological explanation for seemingly contradictory experimental results obtained in our research groups. Even with ice nucleation treated fundamentally as a stochastic process this process can be masked by the heterogeneity of surface properties, as might be typical for realistic atmospheric particle populations. Full evaluation of the model findings will require experiments with well characterized ice nucleating particles and the ability to vary both temperature and waiting time for freezing

    Continuous and correlated nucleation during nonstandard island growth at Ag/Si(111)-7x7 heteroepitaxy

    Full text link
    We present a combined experimental and theoretical study of submonolayer heteroepitaxial growth of Ag on Si(111)-7x7 at temperatures from 420 K to 550 K when Ag atoms can easily diffuse on the surface and the reconstruction 7x7 remains stable. STM measurements for coverages from 0.05 ML to 0.6 ML show that there is an excess of smallest islands (each of them fills up just one half-unit cell - HUC) in all stages of growth. Formation of 2D wetting layer proceeds by continuous nucleation of the smallest islands in the proximity of larger 2D islands (extended over several HUCs) and following coalescence with them. Such a growth scenario is verified by kinetic Monte Carlo simulation which uses a coarse-grained model based on a limited capacity of HUC and a mechanism which increases nucleation probability in a neighbourhood of already saturated HUCs (correlated nucleation). The model provides a good fit for experimental dependences of the relative number of Ag-occupied HUCs and the preference in occupation of faulted HUCs on temperature and amount of deposited Ag. Parameters obtained for the hopping of Ag adatoms between HUCs agree with those reported earlier for initial stages of growth. The model provides two new parameters - maximum number of Ag atoms inside HUC, and on HUC boundary.Comment: LaTeX2e, BibTeX, 9 pages, 7 images, accepted to Phys. Rev.
    corecore