133 research outputs found

    Molecular evolution of immune genes in the invasive Argentine ant

    Get PDF
    Contains fulltext : 141055.pdf (publisher's version ) (Open Access)34 p

    Suppressed bone turnover in obesity: a link to energy metabolism? A case-control study

    Get PDF
    CONTEXT\nObservations in rodents suggest that osteocalcin (OC) participates in glucose metabolism. Based on human studies, it remains unclear whether circulating OC is simply a bone turnover marker (BTM) or also a mediator in interactions between the skeleton and glucose homeostasis.\nOBJECTIVE\nThe objective of the study was to determine the responses of BTMs, including OC, to oral glucose tolerance test (OGTT) in a case-control setting.\nDESIGN AND PATIENTS\nThirty-four normoglycemic young adults [mean age 19 y (SD 2.3)] with severe childhood-onset obesity and their gender- and age-matched nonobese controls underwent a standard 2-hour OGTT.\nMAIN OUTCOME MEASURES\nGlucose, insulin, and six BTMs including total and carboxylated OC (cOC) were determined at baseline and at 30, 60, 90, and 120 minutes during OGTT.\nRESULTS\nThe obese and control subjects were similar in height; the mean body mass indices were 40.4 and 21.9 kg/m(2), respectively. The homeostasis model assessment index was 2.7 times greater in the obese subjects. All BTMs, except bone-specific alkaline phophatase, were lower in the obese subjects compared with the controls: the differences at baseline were 40%, 35%, 17%, 31%, and 32% for N-terminal propeptides of type I collagen, cross-linked telopeptides of type I collagen, tartrate-resistant acid phosphatase, total OC, and carboxylated OC (P &lt; .05 for all) after adjusting for whole-body bone area. All BTMs decreased during OGTT. The relative values for the OGTT responses for total, but not for cOC (measured as area under the curve) differed between the two groups (P = .029 and P = .139, respectively): the decrease in total OC during the OGTT was less pronounced in the obese subjects. Responses in other BTMs were similar between the groups. No associations were observed between glucose metabolism and OCs during OGTT with linear regression.\nCONCLUSIONS\nBone turnover markers were substantially lower in obese subjects compared with controls. Total OC and cOC showed less pronounced decrease during the OGTT in obese subjects compared with controls, whereas other BTMs responded similarly in the two groups. The role of OC, if anything, in glucose homeostasis is indirect and may be mediated via other factors than glucose or insulin.</p

    High-Dose Vitamin D Supplementation Does Not Prevent Allergic Sensitization of Infants

    Get PDF
    Objective To investigate the effect of vitamin D supplementation dose on allergic sensitization and allergic diseases in infants, and to evaluate whether vitamin D status in pregnancy and at birth are associated with infant allergy outcomes. Study design Altogether, 975 infants participated in a randomized, controlled trial of daily vitamin D supplementation of 10 mu g (400 IU) or 30 mu g (1200 IU) from the age of 2 weeks. At 12 months of age, food and aeroallergen IgE antibodies were measured, and the occurrence of allergic diseases and wheezing were evaluated. Results We found no differences between the vitamin D supplementation groups in food (OR, 0.98; 95% CI, 0.66-1.46) or aeroallergen sensitization at 12 months (OR, 0.76; 95% CI,0.34-1.71). Allergic diseases or wheezing did not differ between groups, except for milk allergy which occurred more often in infants administered 30 mu g vitamin D compared with the 10 mu g dose (OR, 2.23; 95% CI, 1.00-4.96). Infants with high cord blood 25-hydroxyvitamin D (>= 100 nmol/L) had a higher risk of food allergen sensitization compared with those with lower 25(OH)D concentration (75-99.9 nmol/L; OR, 2.00; 95% CI, 1.19-3.39). Conclusions High-dose vitamin D supplementation did not prevent allergic sensitization, allergic diseases, or wheezing during the first year of life. In contrast, we observed an increased risk of milk allergy in infants randomized to higher vitamin D supplementation, and an increased risk of allergic sensitization in infants with high cord blood vitamin D status, indicating a possible adverse effect of high concentrations of vitamin D.Peer reviewe

    Prediction of winter vitamin D status and requirements in the UK population based on 25(OH) vitamin D half-life and dietary intake data

    Get PDF
    On a population basis, there is a gradual decline in vitamin D status (plasma 25(OH)D) throughout winter. We developed a mathematical model to predict the population winter plasma 25(OH)D concentration longitudinally, using age-specific values for 25(OH)D expenditure (25(OH)D3t1/2), cross-sectional plasma 25(OH)D concentration and vitamin D intake (VDI) data from older (70+ years; n=492) and younger adults (18-69 years; n=448) participating in the UK National Diet and Nutrition Survey. From this model, the population VDI required to maintain the mean plasma 25(OH)D at a set concentration can be derived. As expected, both predicted and measured population 25(OH)D (mean (95%CI)) progressively declined from September to March (from 51 (40-61) to 38 (36-41)nmol/L (predicted) vs 38 (27-48)nmol/L (measured) in older people and from 59 (54-65) to 34 (31-37)nmol/L (predicted) vs 37 (31-44)nmol/L (measured) in younger people). The predicted and measured mean values closely matched. The predicted VDIs required to maintain mean winter plasma 25(OH)D at 50nmol/L at the population level were 10 (0-20) to 11 (9-14) and 11 (6-16) to 13(11-16)μg/d for older and younger adults, respectively dependent on the month. In conclusion, a prediction model accounting for 25(OH)D3t1/2, VDI and scaling factor for the 25(OH)D response to VDI, closely predicts measured population winter values. Refinements of this model may include specific scaling factors accounting for the 25(OH)D response at different VDIs and as influenced by body composition and specific values for 25(OH)D3 t1/2 dependent on host factors such as kidney function. This model may help to reduce the need for longitudinal measurements

    Early life vitamin D depletion alters the postnatal response to skeletal loading in growing and mature bone

    Get PDF
    There is increasing evidence of persistent effects of early life vitamin D exposure on later skeletal health; linking low levels in early life to smaller bone size in childhood as well as increased fracture risk later in adulthood, independently of later vitamin D status. A major determinant of bone mass acquisition across all ages is mechanical loading. We tested the hypothesis in an animal model system that early life vitamin D depletion results in abrogation of the response to mechanical loading, with consequent reduction in bone size, mass and strength during both childhood and adulthood. A murine model was created in which pregnant dams were either vitamin D deficient or replete, and their offspring moved to a vitamin D replete diet at weaning. Tibias of the offspring were mechanically loaded and bone structure, extrinsic strength and growth measured both during growth and after skeletal maturity. Offspring of vitamin D deplete mice demonstrated lower bone mass in the non loaded limb and reduced bone mass accrual in response to loading in both the growing skeleton and after skeletal maturity. Early life vitamin D depletion led to reduced bone strength and altered bone biomechanical properties. These findings suggest early life vitamin D status may, in part, determine the propensity to osteoporosis and fracture that blights later life in many individuals

    Bone Density, Microstructure and Strength in Obese and Normal Weight Men and Women in Younger and Older Adulthood

    Get PDF
    Obesity is associated with greater areal BMD (aBMD) and is considered protective against hip and vertebral fracture. Despite this, there is a higher prevalence of lower leg and proximal humerus fracture in obesity. We aimed to determine if there are site‐specific differences in BMD, bone structure, or bone strength between obese and normal‐weight adults. We studied 100 individually‐matched pairs of normal (body mass index [BMI] 18.5 to 24.9 kg/m2) and obese (BMI >30 kg/m2) men and women, aged 25 to 40 years or 55 to 75 years. We assessed aBMD at the whole body (WB), hip (TH), and lumbar spine (LS) with dual‐energy X‐ray absorptiometry (DXA), LS trabecular volumetric BMD (Tb.vBMD) by quantitative computed tomography (QCT), and vBMD and microarchitecture and strength at the distal radius and tibia with high‐resolution peripheral QCT (HR‐pQCT) and micro–finite element analysis. Serum type 1 procollagen N‐terminal peptide (P1NP) and collagen type 1 C‐telopeptide (CTX) were measured by automated electrochemiluminescent immunoassay (ECLIA). Obese adults had greater WB, LS, and TH aBMD than normal adults. The effect of obesity on LS and WB aBMD was greater in older than younger adults (p < 0.01). Obese adults had greater vBMD than normal adults at the tibia (p < 0.001 both ages) and radius (p < 0.001 older group), thicker cortices, higher cortical BMD and tissue mineral density, lower cortical porosity, higher trabecular BMD, and higher trabecular number than normal adults. There was no difference in bone size between obese and normal adults. Obese adults had greater estimated failure load at the radius (p < 0.05) and tibia (p < 0.01). Differences in HR‐pQCT measurements between obese and normal adults were seen more consistently in the older than the younger group. Bone turnover markers were lower in obese than in normal adults. Greater BMD in obesity is not an artifact of DXA measurement. Obese adults have higher BMD, thicker and denser cortices, and higher trabecular number than normal adults. Greater differences between obese and normal adults in the older group suggest that obesity may protect against age‐related bone loss and may increase peak bone mass

    Dynamics of Immune System Gene Expression upon Bacterial Challenge and Wounding in a Social Insect (Bombus terrestris)

    Get PDF
    The innate immune system which helps individuals to combat pathogens comprises a set of genes representing four immune system pathways (Toll, Imd, JNK and JAK/STAT). There is a lack of immune genes in social insects (e.g. honeybees) when compared to Diptera. Potentially, this might be compensated by an advanced system of social immunity (synergistic action of several individuals). The bumble bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and colonies headed by a single queen. We used this key pollinator to study the temporal dynamics of immune system gene expression in response to wounding and bacterial challenge
    corecore