965 research outputs found
Multi-objective optimization in WEDM of D3 tool steel using integrated approach of Taguchi method & Grey relational analysis
In this paper, wire electrical discharge machining of D3 tool steel is studied. Influence of pulse-on time, pulse-off time, peak current and wire speed are investigated for MRR, dimensional deviation, gap current and machining time, during intricate machining of D3 tool steel. Taguchi method is used for single characteristics optimization and to optimize all four process parameters simultaneously, Grey relational analysis (GRA) is employed along with Taguchi method. Through GRA, grey relational grade is used as a performance index to determine the optimal setting of process parameters for multiobjective characteristics. Analysis of variance (ANOVA) shows that the peak current is the most significant parameters affecting on multi-objective characteristics. Confirmatory results, proves the potential of GRA to optimize process parameters successfully for multi-objective characteristics
Effect of Methyl Parathion on Survival and Development of Tadpoles of Indian Cricket Frog Fejervarya Limnocharis
Amphibian populations are declining due to various causes including pesticide contamination in natural habitat. We evaluated effect of Methyl Parathion (MPT) an organophosphate pesticide on survival and development of common paddy field frog Fejervarya limnocharis in a laboratory condition. Effect of 0 µg MPT/L, 500 µg MPT/L, 1000 µg MPT/L, 1500 µg MPT/L, 2000 µg MPT/L and 3000 µg MPT/L was studied using static toxicity test for a duration of 28 days. MPT reduced the survival of tadpole. The mortality increased with the increased concentration of pesticide. The development decreased with increased MPT concentrations. At higher concentrations, MPT induced slow development and tadpoles failed to metamorphose. It is assumed that slow development could affect the larval life and amphibian population in agro-ecosystem
Oligomerization, Conformational Stability and Thermal Unfolding of Harpin, HrpZPss and Its Hypersensitive Response-Inducing C-Terminal Fragment, C-214-HrpZPss.
HrpZ-a harpin from Pseudomonas syringae-is a highly thermostable protein that exhibits multifunctional abilities e.g., it elicits hypersensitive response (HR), enhances plant growth, acts as a virulence factor, and forms pores in plant plasma membranes as well as artificial membranes. However, the molecular mechanism of its biological activity and high thermal stability remained poorly understood. HR inducing abilities of non-overlapping short deletion mutants of harpins put further constraints on the ability to establish structure-activity relationships. We characterized HrpZPss from Pseudomonas syringae pv. syringae and its HR inducing C-terminal fragment with 214 amino acids (C-214-HrpZPss) using calorimetric, spectroscopic and microscopic approaches. Both C-214-HrpZPss and HrpZPss were found to form oligomers. We propose that leucine-zipper-like motifs may take part in the formation of oligomeric aggregates, and oligomerization could be related to HR elicitation. CD, DSC and fluorescence studies showed that the thermal unfolding of these proteins is complex and involves multiple steps. The comparable conformational stability at 25°C (∼10.0 kcal/mol) of HrpZPss and C-214-HrpZPss further suggest that their structures are flexible, and the flexibility allows them to adopt proper conformation for multifunctional abilities
Adaptive response to low dose of EMS or MMS in human peripheral blood lymphocytes
Human peripheral blood lymphocytes stimulated in vitro for 6 hr were exposed to a low (conditioning) dose of ethyl methanesulfonate (EMS; 1.5 x 10(-4) M) or methyl methanesulfonate (MMS; 1.5 x 10(-5) M). After 6 hr, the cells were treated with a high (challenging) concentration of the same agent (1.5 x 10(-3) M EMS or 1.5 x 10(-4) M MMS). The cells that received both conditioning and challenging doses became less sensitive to the induction of sister chromatid exchanges (SCEs) than those which did not receive the pretreatment with EMS or MMS. They responded with lower frequencies of SCEs. This suggests that conditioning dose of EMS or MMS has offered the lymphocytes to have decreased SCEs. This led to the realization that pre-exposure of lymphocytes to low dose can cause the induction of repair activity. This is a clear indication of the existence of adaptive response induced by alkylating agents whether it is ethylating or methylating in human lymphocytes in vitro
Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies.
Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring.We would like to acknowledge H. Ghiradella (University at Albany), M. Blohm and S. Duclos (GE) and V. Greanya, J. Abo-Shaeer, C. Nehl and M. Sandrock (DARPA) for fruitful discussions. This work has been supported in part from DARPA contract W911NF-10-C-0069 ‘Bio Inspired Photonics’ and from General Electric’s Advanced Technology research funds. The content of the information does not necessarily reflect the position or the policy of the US Government
Negative phenotypic and genetic associations between copulation duration and longevity in male seed beetles
Reproduction can be costly and is predicted to trade-off against other characters. However, while these trade-offs are well documented for females, there has been less focus on aspects of male reproduction. Furthermore, those studies that have looked at males typically only investigate phenotypic associations, with the underlying genetics often ignored. Here, we report on phenotypic and genetic trade-offs in male reproductive effort in the seed beetle, Callosobruchus maculatus. We find that the duration of a male's first copulation is negatively associated with subsequent male survival, phenotypically and genetically. Our results are consistent with life-history theory and suggest that like females, males trade-off reproductive effort against longevity
Clade C HIV-1 isolates circulating in Southern Africa exhibit a greater frequency of dicysteine motif-containing Tat variants than those in Southeast Asia and cause increased neurovirulence
Background: HIV-1 Clade C (Subtype C; HIV-1C) is responsible for greater than 50% of infections worldwide. Unlike clade B HIV-1 (Subtype B; HIV-1B), which is known to cause HIV associated dementia (HAD) in approximately 15% to 30% of the infected individuals, HIV-1C has been linked with lower prevalence of HAD (0 to 6%) in India and Ethiopia. However, recent studies report a higher prevalence of HAD in South Africa, Zambia and Botswana, where HIV-1C infections predominate. Therefore, we examined whether Southern African HIV-1C is genetically distinct and investigated its neurovirulence. HIV-1 Tat protein is a viral determinant of neurocognitive dysfunction. Therefore, we focused our study on the variations seen in tat gene and its contribution to HIV associated neuropathogenesis. Results: A phylogenetic analysis of tat sequences of Southern African (South Africa and Zambia) HIV isolates with those from the geographically distant Southeast Asian (India and Bangladesh) isolates revealed that Southern African tat sequences are distinct from Southeast Asian isolates. The proportion of HIV − 1C variants with an intact dicysteine motif in Tat protein (C30C31) was significantly higher in the Southern African countries compared to Southeast Asia and broadly paralleled the high incidence of HAD in these countries. Neuropathogenic potential of a Southern African HIV-1C isolate (from Zambia; HIV-1C1084i), a HIV-1C isolate (HIV-1IndieC1) from Southeast Asia and a HIV-1B isolate (HIV-1ADA) from the US were tested using in vitro assays to measure neurovirulence and a SCID mouse HIV encephalitis model to measure cognitive deficits. In vitro assays revealed that the Southern African isolate, HIV-1C1084i exhibited increased monocyte chemotaxis and greater neurotoxicity compared to Southeast Asian HIV-1C. In neurocognitive tests, SCID mice injected with MDM infected with Southern African HIV-1C1084i showed greater cognitive dysfunction similar to HIV-1B but much higher than those exposed to Southeast Asian HIV − 1C. Conclusions: We report here, for the first time, that HIV-1C from Southern African countries is genetically distinct from Southeast Asian HIV-1C and that it exhibits a high frequency of variants with dicysteine motif in a key neurotoxic HIV protein, Tat. Our results indicate that Tat dicysteine motif determines neurovirulence. If confirmed in population studies, it may be possible to predict neurocognitive outcomes of individuals infected with HIV-1C by genotyping Tat
A Modular and Integrated Optimisation Model for Underwater Vehicles
A modular and integrated optimisation model for the design of underwater vehicles is presented. In the proposed optimisation model two modules (i.e. low fidelity and high fidelity) are incorporated and the basic geometric definition of computer aided design (CAD) is integrated with computational fluid dynamic (CFD) analysis. The hydrodynamic drag is considered as single objective with constraints on the geometric parameters of dimension, space and volume. The CAD model is implemented in MATLAB*TM and CFD model is implemented in Shipflow**TM. A real-world design example of an existing underwater vehicles is presented. The applicability of proposed optimisation model is shown. The presented results show that within given set or sets of constraints the application of optimisation model in design results into an efficient hull form.
- …
