275 research outputs found

    Elevated Ratio of Urinary Metabolites of Thromboxane and Prostacyclin Is Associated with Adverse Cardiovascular Events in ADAPT

    Get PDF
    Results from prevention trials, including the Alzheimer's Disease Anti-inflammatory Prevention Trial (ADAPT), have fueled discussion about the cardiovascular (CV) risks associated with non-steroidal anti-inflammatory drugs (NSAIDs). We tested the hypotheses that (i) adverse CV events reported among ADAPT participants (aged 70 years and older) are associated with increased ratio of urine 11-dehydrothromboxane B2 (Tx-M) to 2′3-donor–6-keto-PGF1 (PGI-M) attributable to NSAID treatments; (ii) coincident use of aspirin (ASA) would attenuate NSAID-induced changes in Tx-M/PGI-M ratio; and (iii) use of NSAIDs and/or ASA would not alter urine or plasma concentrations of F2-isoprostanes (IsoPs), in vivo biomarkers of free radical damage. We quantified urine Tx-M and PGI-M, and urine and plasma F2-IsoPs from 315 ADAPT participants using stable isotope dilution assays with gas chromatography/mass spectrometry, and analyzed these data by randomized drug assignment and self-report compliance as well as ASA use. Adverse CV events were significantly associated with higher urine Tx-M/PGI-M ratio, which seemed to derive mainly from lowered PGI-M. Participants taking ASA alone had reduced urine Tx-M/PGI-M compared to no ASA or NSAID; however, participants taking NSAIDs plus ASA did not have reduced urine Tx-M/PGI-M ratio compared to NSAIDs alone. Neither NSAID nor ASA use altered plasma or urine F2-IsoPs. These data suggest a possible mechanism for the increased risk of CV events reported in ADAPT participants assigned to NSAIDs, and suggest that the changes in the Tx-M/PGI-M ratio was not substantively mitigated by coincident use of ASA in individuals 70 years or older

    Conserved molecular interactions in centriole-to-centrosome conversion.

    Get PDF
    Centrioles are required to assemble centrosomes for cell division and cilia for motility and signalling. New centrioles assemble perpendicularly to pre-existing ones in G1-S and elongate throughout S and G2. Fully elongated daughter centrioles are converted into centrosomes during mitosis to be able to duplicate and organize pericentriolar material in the next cell cycle. Here we show that centriole-to-centrosome conversion requires sequential loading of Cep135, Ana1 (Cep295) and Asterless (Cep152) onto daughter centrioles during mitotic progression in both Drosophila melanogaster and human. This generates a molecular network spanning from the inner- to outermost parts of the centriole. Ana1 forms a molecular strut within the network, and its essential role can be substituted by an engineered fragment providing an alternative linkage between Asterless and Cep135. This conserved architectural framework is essential for loading Asterless or Cep152, the partner of the master regulator of centriole duplication, Plk4. Our study thus uncovers the molecular basis for centriole-to-centrosome conversion that renders daughter centrioles competent for motherhood.J.F., Z.L., S.S. and N.S.D. are supported from Programme Grant to D.M.G. from Cancer Research UK. H.R. is supported from MRC Programme Grant to D.M.G. J.F. thank the British Academy and the Royal Society for Newton International Fellowship and Z.L. thanks the Federation of European Biochemical Societies for the Long-Term postdoctoral Fellowship. The authors thank Nicola Lawrence and Alex Sossick for assistance with 3D-SIM.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/ncb327

    Outcomes of polytrauma patients with diabetes mellitus.

    Get PDF
    BACKGROUND: The impact of diabetes mellitus in patients with multiple system injuries remains obscure. This study was designed to increase knowledge of outcomes of polytrauma in patients who have diabetes mellitus. METHODS: Data from the Trauma Audit and Research Network was used to identify patients who had suffered polytrauma during 2003 to 2011. These patients were filtered to those with known outcomes, then separated into those with diabetes, those known to have other co-morbidities but not diabetes and those known not to have any co-morbidities or diabetes. The data were analyzed to establish if patients with diabetes had differing outcomes associated with their diabetes versus the other groups. RESULTS: In total, 222 patients had diabetes, 2,558 had no past medical co-morbidities (PMC), 2,709 had PMC but no diabetes. The diabetic group of patients was found to be older than the other groups (P <0.05). A higher mortality rate was found in the diabetic group compared to the non-PMC group (32.4% versus 12.9%), P <0.05). Rates of many complications including renal failure, myocardial infarction, acute respiratory distress syndrome, pulmonary embolism and deep vein thrombosis were all found to be higher in the diabetic group. CONCLUSIONS: Close monitoring of diabetic patients may result in improved outcomes. Tighter glycemic control and earlier intervention for complications may reduce mortality and morbidity

    Multicenter retrospective analysis of 581 patients with primary intestinal non-hodgkin lymphoma from the Consortium for Improving Survival of Lymphoma (CISL)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary intestinal non-Hodgkin lymphoma (NHL) is a heterogeneous disease with regard to anatomic and histologic distribution. Thus, analyses focusing on primary intestinal NHL with large number of patients are warranted.</p> <p>Methods</p> <p>We retrospectively analyzed 581 patients from 16 hospitals in Korea for primary intestinal NHL in this retrospective analysis. We compared clinical features and treatment outcomes according to the anatomic site of involvement and histologic subtypes.</p> <p>Results</p> <p>B-cell lymphoma (n = 504, 86.7%) was more frequent than T-cell lymphoma (n = 77, 13.3%). Diffuse large B-cell lymphoma (DLBCL) was the most common subtype (n = 386, 66.4%), and extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT) was the second most common subtype (n = 61, 10.5%). B-cell lymphoma mainly presented as localized disease (Lugano stage I/II) while T-cell lymphomas involved multiple intestinal sites. Thus, T-cell lymphoma had more unfavourable characteristics such as advanced stage at diagnosis, and the 5-year overall survival (OS) rate was significantly lower than B-cell lymphoma (28% versus 71%, P < 0.001). B symptoms were relatively uncommon (20.7%), and bone marrow invasion was a rare event (7.4%). The ileocecal region was the most commonly involved site (39.8%), followed by the small (27.9%) and large intestines (21.5%). Patients underwent surgery showed better OS than patients did not (5-year OS rate 77% versus 57%, P < 0.001). However, this beneficial effect of surgery was only statistically significant in patients with B-cell lymphomas (P < 0.001) not in T-cell lymphomas (P = 0.460). The comparison of survival based on the anatomic site of involvement showed that ileocecal regions had a better 5-year overall survival rate (72%) than other sites in consistent with that ileocecal region had higher proportion of patients with DLBCL who underwent surgery. Age > 60 years, performance status ≥ 2, elevated serum lactate dehydrogenase, Lugano stage IV, presence of B symptoms, and T-cell phenotype were independent prognostic factors for survival.</p> <p>Conclusions</p> <p>The survival of patients with ileocecal region involvement was better than that of patients with involvement at other sites, which might be related to histologic distribution, the proportion of tumor stage, and need for surgical resection.</p

    Individual Liberty and the Importance of the Concept of the People

    Get PDF
    UID/FIL/00183/2013Through publically agreed laws that correspond to a common set of public restrictions, the ‘people as a sovereign body’ serves to protect against violations of individual liberty and despotic power. Where no such common body exists, individuals are deprived of this protection. In such cases, individuals must obey without liberty, while those in power command under a state of license. Neoliberal theorists maintain that any common personality, with its corresponding set of public and arbitrary positive and negative restrictions on liberty, undermines individual liberty. Neoliberal theory only allows for private restrictions on liberty. Against these neoliberal assumptions, we argue that rejecting public restrictions on liberty does not promote individual liberty. To the 1᢫ ᢬ ᢭ ᢮ 1 contrary, it creates conditions in which free individuals become servile and political inequality becomes entrenched, where citizens are divided into those who obey and those who command. Tracing the consequences of neoliberalism, we argue that unless we take seriously both the people as a political category and the right to equal and reciprocal coercion, individual liberty will be at risk. We also argue that neoliberalism ultimately leads to the total exclusion of certain citizens under the veil of full liberty. With the vanishing of the people’s will comes the utter disappearance of certain citizens, who live in the spontaneous society as if they were stateless or lawless persons. To better understand the connections between the rejection of the concept of the people, private restrictions on liberty and the fostering of the servile citizen, this paper considers the political philosophy of Hayek and Nozick. It also considers key ideas from Locke and Kant—theorists who, despite the differences between their philosophical perspectives, and despite the fact that they both provided crucial inspiration for Hayek’s political economy and Nozick’s libertarianism, stressed the protective role of the people with regard to individual liberty.publishersversionpublishe

    Accumulation of neutral lipids in peripheral blood mononuclear cells as a distinctive trait of Alzheimer patients and asymptomatic subjects at risk of disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease is the most common progressive neurodegenerative disease. In recent years, numerous progresses in the discovery of novel Alzheimer's disease molecular biomarkers in brain as well as in biological fluids have been made. Among them, those involving lipid metabolism are emerging as potential candidates. In particular, an accumulation of neutral lipids was recently found by us in skin fibroblasts from Alzheimer's disease patients. Therefore, with the aim to assess whether peripheral alterations in cholesterol homeostasis might be relevant in Alzheimer's disease development and progression, in the present study we analyzed lipid metabolism in plasma and peripheral blood mononuclear cells from Alzheimer's disease patients and from their first-degree relatives.</p> <p>Methods</p> <p>Blood samples were obtained from 93 patients with probable Alzheimer's disease and from 91 of their first-degree relatives. As controls we utilized 57, cognitively normal, over-65 year-old volunteers and 113 blood donors aged 21-66 years, respectively. Data are reported as mean ± standard error. Statistical calculations were performed using the statistical analysis software Origin 8.0 version. Data analysis was done using the Student t-test and the Pearson test.</p> <p>Results</p> <p>Data reported here show high neutral lipid levels and increased ACAT-1 protein in about 85% of peripheral blood mononuclear cells freshly isolated (<it>ex vivo</it>) from patients with probable sporadic Alzheimer's disease compared to about 7% of cognitively normal age-matched controls. A significant reduction in high density lipoprotein-cholesterol levels in plasma from Alzheimer's disease blood samples was also observed. Additionally, correlation analyses reveal a negative correlation between high density lipoprotein-cholesterol and cognitive capacity, as determined by Mini Mental State Examination, as well as between high density lipoprotein-cholesterol and neutral lipid accumulation. We observed great variability in the neutral lipid-peripheral blood mononuclear cells data and in plasma lipid analysis of the subjects enrolled as Alzheimer's disease-first-degree relatives. However, about 30% of them tend to display a peripheral metabolic cholesterol pattern similar to that exhibited by Alzheimer's disease patients.</p> <p>Conclusion</p> <p>We suggest that neutral lipid-peripheral blood mononuclear cells and plasma high density lipoprotein-cholesterol determinations might be of interest to outline a distinctive metabolic profile applying to both Alzheimer's disease patients and asymptomatic subjects at higher risk of disease.</p

    Intermediate Phenotypes Identify Divergent Pathways to Alzheimer's Disease

    Get PDF
    Background: Recent genetic studies have identified a growing number of loci with suggestive evidence of association with susceptibility to Alzheimer's disease (AD). However, little is known of the role of these candidate genes in influencing intermediate phenotypes associated with a diagnosis of AD, including cognitive decline or AD neuropathologic burden. Methods/Principal Findings: Thirty-two single nucleotide polymorphisms (SNPs) previously implicated in AD susceptibility were genotyped in 414 subjects with both annual clinical evaluation and completed brain autopsies from the Religious Orders Study and the Rush Memory and Aging Project. Regression analyses evaluated the relation of SNP genotypes to continuous measures of AD neuropathology and cognitive function proximate to death. A SNP in the zinc finger protein 224 gene (ZNF224, rs3746319) was associated with both global AD neuropathology (p = 0.009) and global cognition (p = 0.002); whereas, a SNP at the phosphoenolpyruvate carboxykinase locus (PCK1, rs8192708) was selectively associated with global cognition (p = 3.57×10−4). The association of ZNF224 with cognitive impairment was mediated by neurofibrillary tangles, whereas PCK1 largely influenced cognition independent of AD pathology, as well as Lewy bodies and infarcts. Conclusions/Significance: The findings support the association of several loci with AD, and suggest how intermediate phenotypes can enhance analysis of susceptibility loci in this complex genetic disorder

    Cognitive reserve, presynaptic proteins and dementia in the elderly

    Get PDF
    Differences in cognitive reserve may contribute to the wide range of likelihood of dementia in people with similar amounts of age-related neuropathology. The amounts and interactions of presynaptic proteins could be molecular components of cognitive reserve, contributing resistance to the expression of pathology as cognitive impairment. We carried out a prospective study with yearly assessments of N=253 participants without dementia at study entry. Six distinct presynaptic proteins, and the protein–protein interaction between synaptosomal-associated protein 25 (SNAP-25) and syntaxin, were measured in post-mortem brains. We assessed the contributions of Alzheimer's disease (AD) pathology, cerebral infarcts and presynaptic proteins to odds of dementia, level of cognitive function and cortical atrophy. Clinical dementia was present in N=97 (38.3%), a pathologic diagnosis of AD in N=142 (56.1%) and cerebral infarcts in N=77 (30.4%). After accounting for AD pathology and infarcts, greater amounts of vesicle-associated membrane protein, complexins I and II and the SNAP-25/syntaxin interaction were associated with lower odds of dementia (odds ratio=0.36–0.68, P<0.001 to P=0.03) and better cognitive function (P<0.001 to P=0.03). Greater cortical atrophy, a putative dementia biomarker, was not associated with AD pathology, but was associated with lower complexin-II (P=0.01) and lower SNAP-25/syntaxin interaction (P<0.001). In conclusion, greater amounts of specific presynaptic proteins and distinct protein–protein interactions may be structural or functional components of cognitive reserve that reduce the risk of dementia with aging

    Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease

    Get PDF
    Biomarkers of brain Aβ amyloid deposition can be measured either by cerebrospinal fluid Aβ42 or Pittsburgh compound B positron emission tomography imaging. Our objective was to evaluate the ability of Aβ load and neurodegenerative atrophy on magnetic resonance imaging to predict shorter time-to-progression from mild cognitive impairment to Alzheimer’s dementia and to characterize the effect of these biomarkers on the risk of progression as they become increasingly abnormal. A total of 218 subjects with mild cognitive impairment were identified from the Alzheimer’s Disease Neuroimaging Initiative. The primary outcome was time-to-progression to Alzheimer’s dementia. Hippocampal volumes were measured and adjusted for intracranial volume. We used a new method of pooling cerebrospinal fluid Aβ42 and Pittsburgh compound B positron emission tomography measures to produce equivalent measures of brain Aβ load from either source and analysed the results using multiple imputation methods. We performed our analyses in two phases. First, we grouped our subjects into those who were ‘amyloid positive’ (n = 165, with the assumption that Alzheimer's pathology is dominant in this group) and those who were ‘amyloid negative’ (n = 53). In the second phase, we included all 218 subjects with mild cognitive impairment to evaluate the biomarkers in a sample that we assumed to contain a full spectrum of expected pathologies. In a Kaplan–Meier analysis, amyloid positive subjects with mild cognitive impairment were much more likely to progress to dementia within 2 years than amyloid negative subjects with mild cognitive impairment (50 versus 19%). Among amyloid positive subjects with mild cognitive impairment only, hippocampal atrophy predicted shorter time-to-progression (P < 0.001) while Aβ load did not (P = 0.44). In contrast, when all 218 subjects with mild cognitive impairment were combined (amyloid positive and negative), hippocampal atrophy and Aβ load predicted shorter time-to-progression with comparable power (hazard ratio for an inter-quartile difference of 2.6 for both); however, the risk profile was linear throughout the range of hippocampal atrophy values but reached a ceiling at higher values of brain Aβ load. Our results are consistent with a model of Alzheimer’s disease in which Aβ deposition initiates the pathological cascade but is not the direct cause of cognitive impairment as evidenced by the fact that Aβ load severity is decoupled from risk of progression at high levels. In contrast, hippocampal atrophy indicates how far along the neurodegenerative path one is, and hence how close to progressing to dementia. Possible explanations for our finding that many subjects with mild cognitive impairment have intermediate levels of Aβ load include: (i) individual subjects may reach an Aβ load plateau at varying absolute levels; (ii) some subjects may be more biologically susceptible to Aβ than others; and (iii) subjects with mild cognitive impairment with intermediate levels of Aβ may represent individuals with Alzheimer’s disease co-existent with other pathologies
    corecore