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Centrioles are required to assemble centrosomes for cell division and cilia for motility and 

signaling. New centrioles assemble perpendicularly to pre-existing ones in G1-S and 

elongate throughout S and G2. Fully-elongated daughter centrioles are converted into 

centrosomes during mitosis to be able to duplicate and organize pericentriolar material in 

the next cell cycle. Here we show that centriole-to-centrosome conversion requires 

sequential loading of Cep135, Ana1:Cep295 and Asterless:Cep152 onto daughter centrioles 

during mitotic progression. This generates a molecular network spanning from inner- to 

outer-most parts of the centriole. Ana1 forms a molecular strut within the network and its 

essential role can be substituted by an engineered fragment providing an alternative 

linkage between Asterless and Cep135. This conserved architectural framework is essential 

for loading Asterless:Cep152, the partner of the master regulator of centriole duplication, 

Plk4. Our study thus uncovers the molecular basis for centriole-to-centrosome conversion 

that renders daughter centrioles competent for motherhood. 

 

Centrioles are required to assemble both centrosomes and cilia and their dysfunction is 

associated with multiple inherited diseases and cancer1,2. Centriole duplication and maturation 

are tightly regulated; the centriole pair of each centrosome disengages as cells exit mitosis 

allowing new pro-centrioles to assemble in G1-S and elongate during S and G2. Although the 

newly assembled centriole reaches its full length in early mitosis, it cannot duplicate or organize 

pericentriolar material (PCM) until it has passed through mitosis3,4. The molecular basis of this 

conversion from centriole to centrosome has remained mysterious. 
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Understanding the conversion requires knowledge of which centriolar components are loaded 

during mitosis, their spatial organization and the timing and dependencies of their recruitment. 

Recent developments in super resolution microscopy have proved invaluable in analyzing spatial 

relationships between centrosome components5-10. In Drosophila, Ana2:STIL and Sas-6 first 

appear at the site of pro-centriole formation9,11 (Zone I, Fig. 2a). Ana2:STIL is phosphorylated 

by Polo-like kinase 4 (Plk4)11,12, master regulator of centriole duplication13-16, thus recruits Sas-

611,12 which can self-assemble into nine dimers to form the nine-fold symmetrical, proximally-

located cartwheel17,18. Bld10:Cep135, also in Zone I9, is critical for cartwheel formation in 

Chlamydomonas and Paramecium19,20 and its human counterpart connects Sas-6 to CPAP and 

the centriole wall21. Drosophila Sas-4 is part of the Zone II cylinder and Sas-4:CPAP is 

considered to promote polymerization of centriolar microtubules22-24. The distal cap comprising 

CP110 and its partners constitutes Zone V that, together with proteins of Zones I and II, form the 

core of both mother and daughter centrioles. Zone III proteins, Asterless (Asl), Plk4 and Dplp 

(Drosophila pericentrin-like protein), associate with mother centriole throughout the cell cycle 

but have not yet assembled onto the daughter in interphase. Thus far Asl is the sole factor known 

to recruit Plk4 to the centrosome in Drosophila and hence is key for centriole duplication25,26. 

Zone IV proteins (Polo, Spd-2, Centrosomin and γ-tubulin) also do not associate with daughter 

centriole, but accumulate robustly around the mother upon mitotic entry.  

 

Here we have determined which proteins known to be required for Drosophila centriole 

duplication27,28 are loaded onto the daughter late in interphase and during mitosis. This has 

revealed a conserved architectural network of Cep135-Ana1:Cep295-Asl:Cep152 that is key for 

centriole-to-centrosome conversion in both Drosophila and human. Our findings thus account for 
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the final stages in the assembly of the daughter centriole that convert it into a mature mother able 

to duplicate. 

 

Results 

Sequential loading of Cep135, Ana1 and Asl in centriole-to-centrosome conversion 

To gain understanding of centriole-to-centrosome conversion, we applied 3D Structured 

Illumination Microscopy (3D-SIM) to determine the sequential recruitment of centriolar proteins 

critical for duplication. Dplp is not required for centriole duplication29 and served as a Zone III 

marker. We found that Cep135, Ana1 and Asl were recruited to the daughter centriole as it 

matured: Ana1 was on mother centrioles in all interphase cells but only on a small proportion of 

daughters (19%, n=90, Fig. 1a and Supplementary Fig. 1a), suggesting its recruitment in late 

interphase. In contrast, Sas-6, Ana2 and Sas-4 were associated with both mother and daughter 

centrioles in virtually all interphase cells (Fig. 1b), in accord with their roles in early centriole 

duplication. Ana1 remained associated with daughter centrioles throughout prophase until 

anaphase, and was on disengaged mother and daughter (now new mother) centrioles in 

telophase-G1 (Fig. 1a). Cep135 recruitment followed a similar pattern (Fig. 1c and 

Supplementary Fig. 1b). Of those interphase centrosomes in which Cep135 could be detected on 

daughters, 65% (n=20) also had Ana1. The remaining 35% had weak Cep135 staining but no 

detectable Ana1 (Fig. 1d). Thus Cep135 appears to load slightly ahead of Ana1. Asl was first 

detected on daughter centrioles from prophase onwards (52%, n=82), and formed a complete 

ring by prometaphase-metaphase, hence ahead of Dplp’s gradual recruitment (Fig. 1e and 

Supplementary Fig. 1c) and the loading of Ana1 (Fig. 1f). Together Cep135, Ana1 and Asl load 

sequentially onto daughter centriole from late interphase to early mitosis. 
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Cep135, Ana1 and Asl extend from inner to outer centriole 

To add a spatial dimension to the above temporal framework we tagged Cep135, Ana1 and Asl 

at their N- or C-termini with GFP for constitutive expression in D.Mel-2 cells. All showed 

centrosomal localization except for GFP-Asl, which we later replaced by Flag-Asl that did 

associate with centrosomes. Each tagged protein was able to rescue centriole duplication 

following depletion of its endogenous counterpart (Supplementary Fig. 2a and 3). Strikingly, the 

three proteins each extended across different centriolar Zones (Fig. 2a-d). The C-terminal 

Cep135 tag occupied a dot in Zone I (see also9) whereas its tagged N-terminus lay at the border 

of Zones I and II as a ring (61±11 nm radius). The N-terminal Ana1 tag occupied a relatively 

smaller ring (49±10 nm radius) suggesting Ana1 and Cep135 partially overlap. The C-terminal 

Ana1 tag exhibited a ring of 107±9 nm radius in Zone II, and immunostaining with an antibody 

against the middle part of Ana1 (622-981aa; Fig. 1a and Supplementary Fig. 2a) revealed an 

intermediate ring of 94±10 nm radius. Together this suggests Ana1 has an extended linear 

arrangement in the centriole. The C-terminus of Asl occupied a similar position to the Ana1 C-

terminus (117±12 nm radius), whereas the N-terminal Asl tag occupied a ring of radius 182±16 

nm within Zone III (see also7). To visualize the extended structure of each protein within single 

centriole, we constitutively expressed GFP-tagged Cep135, Ana1 or Asl and immunostained 

with antibodies against the opposite end of the respective protein (anti-Cep135-C30; anti-Ana1-C, 

1400-1729aa; anti-Asl-N, 1-300aa). Line scans of the double end-labelled molecules showed that 

each had an extended configuration within the same centriole (Fig. 2e). Cep135, Ana1 and Asl 

also appeared to have their overlapping termini localized to successively increasing radial 

positions in the elongated centrioles and basal bodies of Drosophila spermatocytes (Fig. 2f; see 
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also9,31). Thus, together Cep135, Ana1 and Asl span from the inner- to the outer-most part of 

Drosophila centrioles both in cultured cells and spermatocytes. 

 

Ana1 provides a molecular linkage between Cep135 and Asl 

The overlapping localization and the sequential recruitment of Cep135, Ana1 and Asl led us to 

ask whether they are physically linked. We approached this in three ways: first, we asked 

whether Ana1 could interact with Cep135 or Asl directly in vitro. We purified and immobilized 

recombinant MBP-tagged Ana1 and determined whether it could bind 35S-Methionine-labelled 

Cep135 or Asl synthesized by in vitro transcription-translation (IVTT). This revealed direct and 

specific binding of MBP-Ana1 to Cep135 and Asl (Fig. 3a). Second, GFP-Trap pull-downs from 

D.Mel-2 cells co-expressing GFP-Ana1 and Flag-tagged Cep135 or Asl revealed specific 

interactions between Ana1 and both Cep135 and Asl (Fig. 3b). Thirdly we co-expressed Ana1 

with either Cep135 or Asl at levels higher than required for their centriole incorporation and 

observed the supramolecular structures that they formed in the cytoplasm (Fig. 3c). Ana1 

typically formed small globular bodies by itself whereas when co-expressed with Cep135, it co-

localized into bundles typical of Cep135 over-expression. When Ana1 was co-expressed with 

Asl, they co-localized in structures typical of over-expression of Asl alone. Thus Ana1 is able to 

complex with either Cep135 or Asl in the cytoplasm. We then asked whether Ana1 could bridge 

Cep135 and Asl to give a trimeric complex (Fig. 3d). When we co-expressed only Cep135 and 

Asl in cells, they formed characteristic independent assemblies. However, co-expression with 

Ana1 brought the three molecules into the same complex, indicating that Ana1 can link Cep135 

and Asl. We further analyzed the complex formed between GFP-Cep135, Asl-mRFP and Ana1-

Flag on glycerol gradient (Fig. 3e). GFP-Cep135 and Asl-mRFP perfectly co-sedimented in the 
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presence of exogenous Ana1, suggesting they are parts of a common assembly. In contrast, when 

only GFP-Cep135 and Asl-mRFP were co-expressed, they sedimented as distinct peaks 

providing further proof that Ana1 is needed to link these molecules. 

 

To determine which part of Ana1 was required for centrosomal localization we transiently 

expressed its GFP-tagged N- or C-terminal truncations (Fig. 4a, b). The N-terminal part (Ana1-N, 

residues 1-935) showed robust centrosome association whereas the C-terminal part (Ana1-C, 

residues 756-1729) spread diffusely throughout the cytoplasm. We then asked which part of 

Ana1 would interact with Cep135 and Asl (Fig. 4c, d). Cep135 co-localized with the N-terminal 

but not the C-terminal part of Ana1 whereas Asl co-localized only with the C-terminal part of 

Ana1. Reciprocally, Ana1 co-localized with N-terminal Cep135 (Cep135-N, residues 1-510) and 

C-terminal Asl (Asl-C, residues 531-994; Fig. 4c, e). Thus the ability of Ana1’s N-terminal part 

to localize to centrosomes is consistent with the association with Cep135. In parallel, we carried 

out GFP-Trap pull-downs from cell lysates co-expressing GFP-Ana1-N or -C with either Flag-

Cep135 or Flag-Asl (Fig. 4g). This showed that Ana1-N interacted with Cep135 and Ana1-C 

with Asl. Similarly, we confirmed the interaction between Ana1 and Cep135-N and Asl-C, 

respectively (Fig. 4h, i). Thus the physical interactions between the terminal regions of Cep135, 

Ana1 and Asl accord with their overlapping distributions revealed by 3D-SIM (Fig. 4f), 

indicating the three proteins form an extended network. 

 

Ana1 loads Asl in centriole-to-centrosome conversion  

The outer-most component of the above network is Asl, which in Drosophila is solely 

responsible for recruiting Plk425, the master regulator of centriole duplication. Accordingly, 
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when Asl was depleted from cultured cells, most centrioles (86%, n=28) did not harbor Sas-6 at a 

site for pro-centriole formation (Fig. 5a; 100% control cells have Sas-6 on both mothers and 

daughters, Fig. 1b, n=30). Thus loading of Asl onto the daughter appears to be required for 

subsequent duplication. This accords with the ability of anti-Asl antibody to block Asl’s loading 

onto daughters in Drosophila embryos so that when daughters disengage from mothers, they fail 

to incorporate new Sas-426. To next address whether Ana1 was required to recruit Asl to 

daughter centriole, we depleted Ana1 from cells and confirmed it led to reduction of centrosome 

numbers (Supplementary Fig. 4a, b) as reported27,28. Electron microscopy (EM) showed no 

obvious changes to the diameter, length or symmetry of residual centrioles in Ana1-depleted 

cells; we also observed successful disengagement of mother and daughter centrioles in an 

anaphase cell (Supplementary Fig. 4c). Interestingly, serial EM sections revealed that Ana1-

depleted centrosomes were devoid of daughter centrioles (Supplementary Fig. 4d, upper panel). 

Random EM sections from Ana1-depleted cells revealed significantly more single centrioles 

compared to wild type cells (Supplementary Fig. 4d, lower panel). Thus Ana1 depletion appears 

not to affect assembly of the walls of daughters but prevents their maturation to become mothers. 

We then selected cells with a single centrosome (marked with Dplp) indicating compromised 

duplication, and found that they all had Ana1 on the mother but not daughter during metaphase 

when it should have been recruited (Fig. 5b). The great majority of these centrosomes had Sas-6, 

Ana2 and Sas-4 associated with both mother and daughter centrioles (Fig. 5c), suggesting the 

initial steps of duplication were not affected. Asl was associated only with mother and not 

daughter centrioles in all metaphase and anaphase centrosomes (Fig. 5d, left and central part). In 

the absence of Ana1, Sas-4 was present on the metaphase daughter centrioles whereas Asl was 

not (Fig. 5d, right part). This suggests that Ana1, and not Sas-4, recruits Asl in centriole-to-



 9 

centrosome conversion. We found Dplp failed to localize to metaphase daughter centrioles after 

depletion of Ana1 (Fig. 5d, left part), and another PCM marker, γ-tubulin, failed to load on 

disengaging daughters (Fig. 5e). This suggests that PCM recruitment is also affected by Ana1 

depletion. 

 

To determine if this loading pathway operates in the fly, we examined the ana1mecB mutant that 

has a premature stop codon at residue 1120. Such flies are uncoordinated, sterile and lack the 

giant spermatocyte centrioles32. Western blotting and immunostaining revealed depletion of 

Ana1 in the mutant testes (Fig. 6a, b) and recruitment of Asl and Dplp was greatly reduced (Fig. 

6c), confirming that Ana1 is required for the correct recruitment and (or) maintenance of Asl and 

Dplp at the centrosome. As in cultured cells, Sas-4 was not obviously affected and could be used 

as a marker of spermatogonial centrosomes. 

 

Co-dependency of Cep135 and Ana1 

We then depleted Cep135 from D.Mel-2 cells to assess its role in the hierarchy and found 

centrosome loss as previously28,33. This also impaired recruitment of Ana1 and Asl to the 

daughter centriole (73% of centrosomes lacked Ana1 at the daughter and 78% lacked Asl, n=67 

and 18; Fig. 5f). Depletion of Ana1 in turn affected Cep135 recruitment (Fig. 5g) pointing to the 

importance of Cep135-Ana1 interaction in the first stage of conversion. The requirement of 

Cep135 for centriole duplication in Drosophila cultured cells (both D.Mel-2 and S2) seems to go 

against the finding that Cep135 mutant flies show few centriole defects30-34. However, we noted 

that the mutant used in these studies (bld10c04199) is predicted to retain the N-terminal 369 amino 

acids30. Indeed using an antibody generated against Cep135’s N-terminal part we observed 
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depletion of full-length protein and generation of a fragment that accorded with the predicted 

truncation in testes extract from bld10c04199 mutant flies (Supplementary Fig. 2b). This suggests 

that it would be prudent to generate a null allele at this locus in order to re-examine the role of 

Cep135 at the centriole in the whole organism.  

 

Physical interactions of Cep135, Ana1 and Asl enable centriole-to-centrosome conversion 

We then showed that full-length transgenic GFP-Ana1, but neither of its N-terminal or C-

terminal parts, could support Asl’s loading onto the daughter centriole following endogenous 

Ana1 depletion (Fig. 7a). Consistently, only full-length GFP-Ana1 was able to rescue centriole 

duplication following the depletion of endogenous Ana1 (Fig. 7b). Together this accords with a 

requirement for one end of Ana1 to bind Asl and the other to provide a link to internal centriole 

components.  

 

To test the hypothesis that Ana1 provides a molecular link, we asked whether we might re-

engineer this molecular network in alternative ways. We therefore replaced the N-terminal 

segment of Ana1 with a GFP-binding protein (GBP)35 and co-expressed it with N-terminally 

GFP-tagged Cep135 (GFP-Cep135, Fig. 7c). This enabled Ana1’s C-terminal part to localize to 

the centrosome rather than throughout the cytoplasm (Supplementary Fig. 5a). We then 

established cell lines constitutively expressing GFP-Cep135 and depleted endogenous Ana1 

while inducing GBP-Ana1-C-mRFP or Ana1-C-mRFP (Supplementary Fig. 5b). Ana1-C-mRFP 

failed to support centriole duplication after endogenous Ana1 depletion whereas GBP-Ana1-C-

mRFP restored centrosome numbers (Fig. 7d and Supplementary Fig. 5c). Sas-4, Dplp and Spd-2 

were normally distributed on these centrioles, which actively undertook duplication (indicated by 
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Sas-4 on the daughter) and PCM recruitment in mitosis (indicated by Spd-2; Fig. 7e). EM 

revealed centrioles in cells expressing GFP-Cep135 and GBP-Ana1-C-mRFP with or without 

endogenous Ana1 had the same symmetry and diameter of those in control cells (Fig. 7f, g) and 

were able to undergo duplication (Fig. 7f). Asl was recruited to Zone III of the rescued centrioles 

and occupied a ring similar in diameter to that in normal D.Mel-2 centrioles (Fig. 7h, i). In 

parallel, we depleted endogenous Ana1 from cells expressing a combination of C-terminally 

GFP-tagged Cep135 (Cep135-GFP) and GBP-Ana1-C-mRFP. This gave some rescue of 

centriole duplication but at a remarkably lower efficiency (Fig. 7j). The diameter of Asl ring in 

these cells was significantly decreased as Cep135-GFP brought Asl to a more inner part of the 

centriole (Fig. 7h, i). Together this indicates that the N-terminal part of Ana1 provides a physical 

linkage to internal centriole components that can be replaced through the molecular 

transplantation of interacting domains. The C-terminal part of Ana1, on the other hand, is 

required to recruit Asl. Thus Ana1 provides a molecular link between the inner and outer parts of 

the centriole that allows Asl to be recruited to the daughter at an appropriate radial position 

giving it the ability to duplicate. 

 

Conserved mechanism of centriole-to-centrosome conversion in human cells 

To investigate if the mechanism for centriole-to-centrosome conversion was used beyond 

Drosophila, we first studied the localization of the human counterparts of Cep135-Ana1-Asl 

known as Cep135, Cep295 and Cep152, respectively (Fig. 8a-c). Cep135 was concentrated at the 

proximal end of the centriole within the microtubule wall and occasionally, in an additional ring 

at the base of microtubule wall as reported6. Cep295 closely surrounded the proximal part of the 

microtubule wall. In agreement with earlier studies6, Cep152 extended from the inner PCM just 
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outside the microtubule wall (300 nm diameter; see also Fig. 8c) to the intermediate PCM (400 

nm diameter; see also Fig. 8f, upper panel). Cep135 and Cep295 were loaded onto daughter 

centrioles at similarly early stages as their Drosophila counterparts. Moreover, Cep152 localized 

predominantly on the mother and was not fully recruited onto the daughter until it started to 

disengage36,37 as in Drosophila. 

 

Depletion of Cep295 from U2OS cells (overall protein level reduced by 96% on Western blot 

and at the centrosome 73% by immunofluorescence; Fig. 8d, e) resulted in 30% of G2 cells 

having one or no centrosomes in accord with earlier reports4,38. Although some cells still had two 

centrosomes, the new mother failed to load Cep152 (Fig. 8f, middle panel). Consequently, we 

observed G2 cells with one doublet indicating successful duplication and one singlet that failed 

to duplicate; this correlated with the absence of Cep152 (Fig. 8f, lower panel). Thus Cep295 has 

a conserved function in loading Cep152 and converting the daughter centriole into a centrosome. 

 

Similarly, depletion of Cep135 (overall protein level reduced by 99% on Western blot and at the 

centrosome 89% by immunofluorescence; Fig. 8g, h) resulted in 38% of G2 cells having only 

one or zero centrosomes consistent to an earlier report21. Cep135 depletion was associated with 

failure to load Cep152 onto newly disengaged daughters as with depletion of Cep295 (Fig. 8i), 

indicating that Cep135 and Cep295 work in a similar pathway to their Drosophila counterparts. 

Indeed fluorescence intensity of Cep295 at the centrosome was reduced by 83% after Cep135 

depletion (Fig. 8j) whereas its total amount in cells was not affected (Fig. 8g). Thus loading of 

Cep295 onto centrosomes depends on Cep135 in human cells. 
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Discussion 

Here we account for the final stages in the assembly of daughter centriole that convert it into a 

mature mother that is able to duplicate. The newly formed pro-centriole has Sas-6, Ana2:STIL 

and Sas-4 at its core, yet only incorporates Cep135, Ana1:Cep295 and Asl:Cep152 at later stages. 

Their sequential recruitment correlates with radial position suggesting that these final stages of 

assembly occur in layers, from inside out. Cep135 is the most interior component and in human 

cells has also been reported to bind Sas-621, the major cartwheel component. In Drosophila, the 

most external component, Asl, is the sole factor known to recruit Plk425 whereas its human 

counterpart, Cep152, competes with another Plk4 binding partner Cep192 at the inner centriole 

to relocate Plk4 to the outer ring36. Despite the differences, human Cep152 is key for Plk4 

function since loss of Cep152-Plk4 interaction affects Sas-6 recruitment to the pro-centriole 

assembly site36,37,39-41. In both species, Asl:Cep152 binds Plk4 through its N-terminal region that 

extends outward into Zone III as does Plk46,7,9,25,36,37,39,40. Without loading of Asl:Cep152 onto 

the daughter, Plk4 could not direct centriole duplication in the next cell cycle.   

 

Our findings allocate a role to Drosophila Ana1, previously known from RNAi and mutant 

studies to be required for centriole duplication27,28,32. Its human counterpart Cep295-KIAA1731, 

with 15% similarity in primary sequence32,38,42, was previously suggested to function in 

centriole-to-centrosome conversion4. We now provide a mechanistic basis for its role in loading 

Cep152 to the newly disengaged daughter in human just as Ana1 does in Drosophila. It remains 

possible that once loaded, Asl:Cep152 could interact with other molecules such as Cep63 and 

Cep192 in human or Sas-4 in Drosophila to be maintained at the centriole25,36,37,43-45. 



 14 

 

Together our findings suggest centriole-to-centrosome conversion involves a cascade of 

interactions in which Cep135 could be first recruited to Sas-6, permitting the sequential loading 

of Ana1:Cep295 and Asl:Cep152 and thereby Plk4. We also demonstrate the high similarity of 

this process between insect and mammalian cells. Centriole-to-centrosome conversion takes 

place following a strict timetable during mitosis in which the mitotic kinase, Plk1, has been 

suggested to play an important role3. It seems likely that the protein-protein interactions we 

describe can be further regulated by phosphorylation both in time and space to control the 

sequence of events. Unraveling the potential roles of Polo:Plk1 in regulating these interactions 

will be a fascinating topic for future study.  
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Figure Legends 

Figure 1. Sequential loading of Cep135, Ana1 and Asl during centriole-to-centrosome 

conversion. 

(a) Localization of endogenous Ana1 throughout cell cycle. D.Mel-2 cells were immunostained 

to reveal Ana1, Dplp (Zone III marker) and DNA (to distinguish cell cycle stages, see 

Supplementary Fig. 1a), and analyzed by 3D-SIM. Interphase, prophase, prometaphase-

metaphase, anaphase and telophase-G1 centrioles were shown. Only 19% (n=90) of interphase 

centrosomes have Ana1 signal on daughter centriole, suggesting Ana1 is recruited to daughter in 

late interphase. M, mother centriole; D, daughter. 

(b) Centrioles immunostained to reveal Dplp (red), DNA (not shown) and Sas-6, Ana2 or Sas-4 

(green). Sas-6, Ana2 and Sas-4 appear on both mother and daughter centrioles in majority of 

interphase centrosomes (100%, 95% and 92%, respectively), indicating their early loading onto 

the daughters. n=30, 43 and 40 centrosomes.  

(c) Localization of endogenous Cep135 throughout cell cycle. 33% (n=93) of interphase 

centrosomes have Cep135 signal on the daughter. See Supplementary Fig. 1b for DNA staining. 

(d) Centrioles immunostained to reveal Ana1 (green), Cep135 (red) and DNA (not shown). Only 

10% (n=70) of interphase centrosomes show earlier (less distinct) loading of Cep135 to the 

daughter than Ana1, indicating a close temporal recruitment of these two. 

(e) Localization of endogenous Asl throughout cell cycle. Asl starts to load on the daughter from 

prophase, when 52% (n=82) of centrosomes show Asl signal on the daughter. See 

Supplementary Fig. 1c for DNA staining. 

(f) Centrioles immunostained to reveal Ana1 (green), Asl (red) and DNA (not shown). 

Recruitment of Asl to the daughter happens later than Ana1.  
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All scale bars, 500 nm. 

 

Figure 2. Cep135, Ana1 and Asl are extended molecules that span from inner to outer 

centriole. 

(a) Scheme showing different Zones in Drosophila centrosome (modified from ref. 9). 

(b) D.Mel-2 cells constitutively expressing GFP-tagged Cep135, Ana1 or Asl were 

immunostained to reveal Dplp and DNA (not shown). Cells expressing Flag-Asl were 

immunostained with additional anti-Flag antibody (bottom panel). The signal of Cep135, Ana1 

or Asl appears in different Zones at centriole when the fluorophore-epitope is at different end of 

the protein. Scale bars, 500 nm. 

(c) Average radial distance of different regions of Cep135, Ana1 or Asl. Low-high bar 

(horizontal) shows the range of radius and vertical line indicates mean. Cep135 in purple; Ana1, 

red; Asl, green. SD, Standard Deviation. From bottom up, n=35, 22, 14, 22, 15, 32 and 15 

centrosomes, respectively. 

(d) Map showing the relative positions of Cep135, Ana1 and Asl within single centriole. N and C 

indicate protein orientation. 

(e) D.Mel-2 cells constitutively expressing GFP-tagged Cep135, Ana1 or Asl were 

immunostained for the respective antibodies recognizing the opposite end of the proteins and 

Dplp. Line scans reveal the stretched structure of exogenous Cep135, Ana1 and Asl at centriole. 

Scale bar, 500 nm. 

(f) Representative images of centrioles in successive developmental stages of fly spermatocytes. 

Immunofluorescence signals are seen at positions of successively increasing diameter extending 
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from (inner-most) C-terminus of Cep135; N-terminus of Cep135; N-terminus of Ana1; C-

terminus of Ana1; C-terminus of Asl; to (outer-most) N-terminus of Asl. Scale bar, 1 µm. 

 

Figure 3. Ana1 provides a molecular linkage between Cep135 and Asl. 

(a) Recombinant MBP or MBP-Ana1 was immobilized on amylose resin and incubated with 35S-

Met-labelled Cep135, Asl or Sas-6 (negative control) synthesized by coupled in vitro 

transcription-translation (IVTT). Inputs (9%, left panel) and affinity-purified complexes (middle 

and right panels) were subjected to SDS-PAGE, stained (Coomassie, upper panels), and dried for 

autoradiography (lower panels). Note: MBP-Ana1 directly and specifically binds to Cep135 and 

Asl. Uncropped scans are in Supplementary Fig. 6. 

(b) GFP or GFP-Ana1 was transiently co-expressed with Flag-Cep135 or Flag-Asl in D.Mel-2 

cells for GFP-Trap pull-downs. Inputs and bound proteins were analyzed by Western blotting. 

GFP-Ana1 specifically co-purifies with Flag-Cep135 and Flag-Asl. Uncropped scans are in 

Supplementary Fig. 6. 

(c) Cep135 or Asl was transiently co-expressed with Ana1. Proteins were tagged either at the N- 

or C-terminus as indicated (cartoon, upper part). Representative images show both Cep135 

(lower part, middle panel) and Asl (lower part, bottom panel) co-localize with Ana1 in cytoplasm, 

observed by GFP (green) or mRFP (red) signal. Flag-Asl was detected with anti-Flag antibody 

(green). Scale bar, 5 µm. 

(d) Cep135 and Asl were transiently co-expressed in cells, with or without additional Ana1 

construct. Cep135 visualized by GFP fluorescence; Asl and Ana1, by mRFP fluorescence or Flag 

immunostaining as appropriate (cartoon, upper part). Cep135 and Asl form independent 
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assemblies in cytoplasm in the absence of exogenous Ana1 (lower part, upper panel) but 

colocalize in the presence of exogenous Ana1 (lower part, lower panel). Scale bar, 5 µm. 

(e) Glycerol gradient sedimentation. D.Mel-2 cells were transiently co-transfected with GFP-

Cep135 and Asl-mRFP (Control) or Ana1-Flag, GFP-Cep135 and Asl-mRFP (Complex), lysed 

and sedimented on 10-30% linear glycerol gradients and collected as 34 fractions. In the 

presence of Ana1-Flag, GFP-Cep135 and Asl-mRFP perfectly co-sediment (lower panel); when 

Ana1-Flag is absent, they only partially co-migrate with distinct main peaks (upper panel). 

 

Figure 4. Cep135, Ana1 and Asl interact via adjacent regions. 

(a) Scheme to identify functional regions of Ana1. Fragments of Ana1 were tagged with GFP, 

transiently expressed in D.Mel-2 cells and analyzed for their localization using fluorescence 

microscopy. The N-terminal half (Ana1-N, 1-935aa) is necessary and sufficient for centrosome 

targeting whereas the C-terminal half (Ana1-C, 756-1729aa) is not. 

(b) Representative images of cells transiently expressing N- or C-terminally GFP-tagged Ana1-N 

or -C and immunostained to reveal Dplp and DNA. Arrows indicate centrosomes.  

(c) Summary of the interaction regions between Cep135, Ana1 and Asl. 

(d) Cep135 or Asl was transiently co-expressed with N- or C-terminal regions of Ana1 in cells, 

proteins tagged as indicated. Ana1-N strongly co-localizes with Cep135 (left panel) whereas 

Ana1-C with Asl (right panel) in cytoplasm, regardless of the positions of the tags. 

(e) Fragments of Cep135 or Asl were transiently co-expressed with Ana1 in cells, proteins 

tagged as indicated. N-terminal half of Cep135 (Cep135-N, 1-510aa) and C-terminal half of Asl 

(Asl-C, 531-994aa) strongly co-localize with Ana1 in cytoplasm, whereas C-terminal half of 

Cep135 (Cep135-C, 500-1059aa) and N-terminal half of Asl (Asl-N, 1-530aa) do not. 
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(f) Summary of interaction surfaces between Cep135, Ana1 and Asl within a single centriole. 

(g-i) D.Mel-2 cells were transiently co-transfected with (g) GFP-tagged Ana1 fragments and 

Flag-tagged Cep135 or Asl, (h) GFP-tagged Cep135 fragments and Ana1-Flag, or (i) GFP-

tagged Asl fragments and Ana1-Flag. Extracts were then subjected to GFP-Trap purification, and 

input and purified proteins (bound) were analyzed by Western blotting. α-tubulin (α-tub) served 

as loading control in (h) and (i). Note: Ana1 specifically binds Cep135-N via its N-terminal part, 

and Asl-C via its C-terminal part. Uncropped scans are in Supplementary Fig. 6.  

All scale bars, 5 µm. 

 

Figure 5. Ana1 loads Asl to daughter centriole for centriole-to-centrosome conversion in 

cultured Drosophila cells.  

(a) D.Mel-2 cells were depleted of endogenous Asl and immunostained to reveal Asl, Dplp, Sas-

6 and DNA. Note: Asl loses its ring structure whereas Dplp remains intact. 86% (n=28) of 

interphase centrosomes fail to recruit Sas-6 to a site for pro-centriole formation.  

(b) D.Mel-2 cells were depleted of GST (control) or Ana1 and immunostained to reveal Ana1, 

Dplp and DNA. Cells with single centrosome were selected indicating compromised duplication. 

Depletion of Ana1 does not affect existing centrioles but prevents Ana1 recruitment onto newly 

formed daughters. 

(c) Ana1-depleted cells were immunostained to reveal Dplp, DNA and Sas-6, Ana2 or Sas-4. 

Recruitment of Sas-6, Ana2 and Sas-4 to interphase daughter centrioles is not affected.  

(d) Control or Ana1-depleted cells were immunostained to reveal Asl, Dplp and DNA or Sas-4, 

Asl and DNA. Depletion of Ana1 leads to failure of Asl recruitment to daughters in metaphase 

and anaphase. Recruitment of Dplp is similarly impaired in metaphase. Sas-4 is seen on mitotic 
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mother and daughter whereas Asl only on mother in the absence of Ana1. Arrow indicates Dplp 

on daughter centriole. 

(e) D.Mel-2 cells were depleted of GST or Ana1 and immunostained to reveal Sas-6, γ-tubulin 

and DNA. Note: in control telophase cells, mother and daughter (new mother-to-be) centrioles 

are both surrounded by γ-tubulin (upper panel, 30 cases out of 30); daughter centrioles in Ana1-

depleted cells fail to recruit γ-tubulin by this stage (lower panel, 8 cases out of 8).  

(f) D.Mel-2 cells were depleted of GST or Cep135 and immunostained to reveal Dplp, DNA and 

Ana1 or Asl. Note: 73% (n=67) and 78% (n=18) of metaphase centrosomes fail to load Ana1 and 

Asl to daughter centrioles, respectively. 

(g) D.Mel-2 cells were depleted of GST or Ana1 and immunostained to reveal Cep135, Sas-6 

and DNA. Loading of Cep135 to the daughter is impaired by Ana1 depletion. Error bars, SEM 

(Standard Error of the Mean); **, p<0.005 (two-tailed student’s t-test); n=20 and 21 centrosomes 

pooled across 3 independent experiments for GST and Ana1 RNAi, respectively. 

Scale bars, 5 µm for complete images of cells and 500 nm for magnified centrioles. 

 

Figure 6. Ana1 in centriole-to-centrosome conversion in Drosophila testes. 

(a) Western blot analysis of testes extract from ana1mecB/Df(3R)Exel7357 males reveals loss of 

full-length Ana1. Control, wild type OregonR (OrR) testes. * indicates nonspecific band. 

(b) Immunofluorescence showing absence of Ana1 at testes tips in ana1mecB/Df(3R)Exel7357 

mutant flies. Sas-4 marks centrosomes in spermatogonia in either presence or absence of Ana1.  

(c) Immunofluorescence showing that recruitment of Asl and Dplp at the centrosomes in 

spermatogonia is greatly reduced in the absence of Ana1.  

Scale bars, 100 µm. 
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Figure 7. Cep135-Ana1-Asl interactions enable centriole-to-centrosome conversion. 

(a) D.Mel-2 cells constitutively expressing GFP-tagged Ana1-N, -C or full length were depleted 

of endogenous Ana1 and stained to reveal Asl and DNA. Only full-length Ana1 can rescue Asl 

recruitment. Scale bar, 500 nm.  

(b) Cells stably expressing GFP, GFP-tagged Ana1-N, -C or full length were depleted of 

endogenous Ana1 and immunostained to reveal Dplp. Only GFP-Ana1 can support centriole 

duplication following endogenous Ana1 depletion. n=3 independent experiments each scoring 

500 cells; error bars, mean +/- SD. 

(c) Schematic of GBP-Ana1-C chimera binding GFP-tagged Cep135 and endogenous Asl.  

(d) Cells co-expressing GFP-Cep135 (constitutively) with Ana1-C-mRFP or GBP-Ana1-C-

mRFP (inducible) were depleted of endogenous Ana1 (Ana1#N dsRNA, 4 days) and 

immunostained to reveal Dplp. GBP-Ana1-C-mRFP complements loss of endogenous Ana1 in 

presence of GFP-Cep135 to permit centriole duplication whereas Ana1-C-mRFP cannot. n=3 

independent experiments each scoring 200 cells; error bars, mean +/- SD. 

(e) Cells co-expressing GFP-Cep135 (green) and GBP-Ana1-C-mRFP were depleted of 

endogenous Ana1 (Ana1#N, 5 days) and immunostained to reveal Dplp (blue), DNA and Sas-4 

or Spd-2 (red). Rescued centrioles are positive for Sas-4, Spd-2, Dplp and capable of duplicating 

and recruiting PCM. Scale bar, 500 nm. 

(f, g) EM of cells co-expressing GFP-Cep135 and GBP-Ana1-C-mRFP with or without 

endogenous Ana1 (Ana1#N, 5 days). (f) Engineered centrioles maintain nine-fold symmetry and 

duplicate. Arrowheads, mothers; arrows, daughters. Scale bar, 100 nm. (g) Engineered centrioles 
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are similar in diameter to controls. Error bars, SEM; NS, not significant (two-tailed student’s t-

test p>0.1); from left to right, n=13, 9 and 13 centrosomes. 

(h, i) Cells co-expressing GFP-Cep135 or Cep135-GFP with GBP-Ana1-C-mRFP were depleted 

of endogenous Ana1 (Ana1#N, 5 days) and immunostained for Asl. GFP-Cep135 and GBP-

Ana1-C-mRFP recruits Asl to similar radial position as in control cells; Cep135-GFP and GBP-

Ana1-C-mRFP recruit Asl more interiorly. Scale bar, 500 nm. Error bars, SEM; NS, not 

significant (two-tailed student’s t-test p>0.1); ***, p<0.001; from left to right, n=40, 33 and 42 

centrosomes. 

(j) Cells co-expressing Cep135-GFP with Ana1-C-mRFP or GBP-Ana1-C-mRFP were depleted 

of endogenous Ana1 (Ana1#N, 4 days) and immunostained to reveal Dplp. Note limited rescue 

of centriole duplication by GBP-Ana1-C-mRFP and no rescue by Ana1-C-mRFP. n=3 

independent experiments each scoring 200 cells. Error bars, mean +/- SD.   

 

Figure 8. Mechanism for centriole-to-centrosome conversion is conserved in human cells. 

(a-c) U2OS cells immunostained to reveal acetylated tubulin (ac-tub), DNA (by DAPI), and 

Cep135 (a), Cep295 (b) or Cep152 (c, antibody against C-terminus). Centrioles from different 

stages of centrosome cycle (engaged, disengaged and undergoing duplication) are shown. 

Cep135 and Cep295 are recruited onto daughter centrioles (arrowheads) early in centriole 

assembly; Cep152 is only fully loaded when daughter disengages from mother. Cep135 strongly 

localizes to the proximal end of centriole within microtubule wall, and in some cases at the base 

of the wall (arrows). Cep295 closely surrounds proximal part of microtubule wall.  

(d, e) U2OS cells were transfected with control or Cep295 siRNA, synchronized to G2 and 

subjected to Western blotting (d) or immunostaining for Cep295 and γ-tubulin (e; γ-tub as 
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centrosome marker). Overall Cep295 is reduced by 96% (d, * indicates nonspecific band), and at 

centrosome by 73% (e, n=30 centrosomes each; error bars, mean +/- SD; ***, p<0.001 (two-

tailed student’s t-test)). 

(f) U2OS cells were depleted of Cep295, synchronized to G2 and immunostained to reveal ac-

tub, Cep152 (antibody to N-terminus) and DNA. Note: newly disengaged daughter fails to load 

Cep152 when Cep295 is depleted (middle panel), correlating with failure of duplication (lower 

panel; arrowhead, daughter centriole.) 

(g, h) U2OS cells were transfected with control or Cep135 siRNA, synchronized to G2 and 

subjected to Western blotting (g) or immunostaining to reveal Cep135 and γ-tubulin (h). Overall 

Cep135 level is reduced by 99% (g, * indicates nonspecific band), and at centrosome by 89% (h, 

n=30 centrosomes each; error bars, mean +/- SD; ***, p<0.001 (two-tailed student’s t-test)). 

Overall Cep295 level is not affected by Cep135 depletion (g). 

(i) U2OS cells were depleted of Cep135, synchronized to G2 and immunostained to reveal ac-tub, 

Cep152 (antibody to N-terminus) and DNA. Newly disengaged daughter fails to load Cep152 

when Cep135 is depleted. 

(j) U2OS cells treated as in (i) were immunostained to reveal Cep295 and γ-tubulin. Note: 

intensity of Cep295 at centrosome is reduced by 82% following Cep135 depletion (n=30 

centrosomes each; error bars, mean +/- SD; ***, p<0.001 (two-tailed student’s t-test)). 

Scale bars, 5 µm for complete images and 1 µm for magnified centrioles. 
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Methods 

DNA Constructs 

cDNA clones for cep135, ana1, sas-6 and asl were described in11, sas-4 in15, and gbp was a gift 

from Iain Hagan (University of Manchester, UK) 35. Entry clones with CDS encoding full-length 

or fragments of these genes were generated using Gateway System (Life Technologies). 

Expression constructs were made by recombination between entry clones and the following 

destination vectors: pDEST15 (for N-terminal GST fusion in E. coli, Life Technologies), 

pDEST17 (for N-terminal 6xHis fusion in E. coli, Life Technologies), pET-T7-DEST42 (for 

IVTT expression under the regulation of T7 promoter; Life Technologies; due to the stop codon 

between the CDS and 6xHis, the tag is not translated), pKM596 (for N-terminal MBP fusion in E. 

coli, Addgene), pAFW or pAWF (for actin5C promoter-driven N- or C-terminal 3xFlag fusion in 

D.Mel-2 cells, Drosophila Genomics Resource Center (DGRC, NIH grant 2P40OD010949-

10A1)), pAGW or pAWG (for actin5C promoter-driven N- or C-terminal GFP fusion in cells, 

DGRC), pMT-N-mRFP or -C-mRFP (for inducible metallothionein promoter-driven N- or C-

terminal mRFP fusion in cells), pAct5c-C-mRFP (for actin5C promoter-driven C-terminal mRFP 

fusion in cells), pUGW or pUWG (for ubiquitin promoter-driven N- or C-terminal GFP fusion in 

flies, DGRC). For cloning GBP and Ana1-C into a Gateway destination vector, MultiSite 

Gateway Pro 2.0 (Life Technologies) was used. 

Recombinant Protein Expression and Purification 

Maltose binding protein (MBP) or MBP-tagged Ana1 were expressed in E. coli strain 

RosettaTM2(DE3)pLysS SinglesTM (Novagen) induced with 0.3 mM isopropyl 1-thio-β-D-

galactopyranoside for 6 h at 24°C. Cells were lysed by sonication in ice cold LBM buffer (20 

mM Tris pH 7.4, 200 mM NaCl, 1 mM EDTA, 1 mM DTT, 2 mM MgCl2, 5% glycerol) 
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supplemented with EDTA-free complete protease inhibitor cocktail (PIC, Roche) and 0.2 mg/ml 

lysozyme (Sigma). Recombinant proteins were immobilized on Amylose resin (NEB) following 

the manufacturer’s instruction. Beads were resuspended in LBM + 50 % glycerol and stored at -

20°C before used in in vitro binding assay. 

Glutathione S-transferase (GST)-tagged Sas-4-301-600aa, Sas-4-601-901aa or Ana1-622-

981aa (Ana1-M-antigen) were expressed in E. coli strain BL21Star(DE3)pLysS (Life 

Technologies) as detailed above. Cells were lysed by sonication in PBS supplemented with 1 

mM PMSF, PIC and 2% N-Lauroylsarcosine (Sigma, 61747). 4% Triton X-100 was then added 

and the lysate was incubated for 20 min at 4°C followed by centrifugation at 34,000g, at 4°C for 

20 min. Recombinant proteins were purified on Glutathione Sepharose 4B beads (GE 

Healthcare). GST-tagged Sas-4-301-600aa and Sas-4-601-901aa were eluted from the resin using 

100 mM Glycine-HCl (pH 2.1), while Ana1-622-981aa eluted with reduced glutathione solution 

(50 mM Tris pH 8.0, 20 mM glutathione). His-tagged Ana1-1400-1729aa (Ana1-C-antigen) or 

Cep135-1-225 (Cep135-N-antigen) were expressed in E. coli strain BL21Star(DE3)pLysS or 

RosettaTM2(DE3)pLysS SinglesTM (Novagen). Ana1 antigen was purified on Ni-NTA agarose 

(Qiagen) under native conditions and eluted following the manufacturer’s guide. Cep135 antigen 

was purified on Ni-NTA resin under denaturing condition and refolded following standard 

protocol. Purified proteins were concentrated and dialyzed against PBS or PBS + 1 M Urea 

overnight before used for immunization. 

Antibodies 

The following primary antibodies were used for immunofluorescence in Drosophila cells or 

tissues: rat anti-Sas-611 (1:100, against GST-Sas-6-236-472aa); rabbit anti-Ana211 (1:500, against 

GST-Ana2-1-280aa); rat anti-Sas-4 (1:500, against the mixture of GST-Sas-4-301-600aa and 
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GST-Sas4-601-901aa, serum produced by Animal Facility at IBMC, Porto, Portugal and purified 

as below); mouse anti-Sas-445 (1:500, monoclonal, courtesy of Tomer Avidor-Reiss (University 

of Toledo, USA)); rabbit anti-Asl25 (1:500, against full length); rabbit anti-Spd-29 (1:500); 

chicken anti-Dplp15 (1:500); mouse anti-γ-tubulin (GTU-88, Sigma T6557); mouse anti-Flag 

(1:1000, M2, Sigma, F3165); rat anti-RFP (1:500, 5F8, ChromoTek). Antibody against C 

terminus of Cep135 was kindly provided by Timothy Megraw (Florida State University, USA) 30 

(rabbit anti-Cep135-C, 1:500); Serum against N terminus of Cep135 was produced by Moravian 

Biotechnology, Czech Republic, and purified as below (Rabbit anti-Cep135-N, 1:500, against 

His-Cep135-1-225aa). Serum against middle region of Ana1 was produced by Animal Facility at 

IBMC (rat anti-Ana1-M, 1:500, against GST-Ana1-622-981aa); Serum against C terminus of 

Ana1 was produced by Scottish National Blood Transfusion Service and purified as below 

(rabbit anti-Ana1-C, 1:5000, against His-Ana1-1400-1729aa). Antibody against N terminus of 

Asl was purified as below (rabbit anti-Asl-N, 1:500, against 1-300aa), and antibody that 

recognizes 16-mer peptide within the C-terminal of Asl was kindly provided by Cayetano 

Gonzalez (IRB Barcelona, Spain) 46.  

Rat anti-Sas-4 and anti-Ana1-M immunoglobulins (IgGs) were purified using a mixture of 

Protein-A and Protein-G Sepharose (GE Healthcare), and rabbit anti-Ana1-C IgG was purified 

on Protein-A Sepharose according to manufacturer’s guidelines. Rabbit anti-Asl-N or anti-

Cep135-N IgGs were affinity purified on Asl-1-300aa or Cep135-1-225aa antigens immobilized 

on nitrocellulose membranes following standard procedures. Specificity of these antibodies was 

verified by Western blotting (Supplementary Fig. 2a, b).   

The following primary antibodies were used for immunofluorescence in human cells: rabbit 

anti-Cep13521 (1:500, against Cep135-650-1140aa-His, courtesy of Tang Tang (Institute of 
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Biomedical Sciences, Taiwan)); rabbit anti-Cep152-N40 (1:500, against Cep152-26-39aa, 

courtesy of Ingrid Hoffmann (German Cancer Research Center, Germany)); rabbit anti-Cep152-

C40 (1:500, against Cep152-1140-1308aa, courtesy of Ingrid Hoffmann); rabbit anti-Cep295 

(KIAA1731, 1:500, Abcam 122490); mouse anti-acetylated tubulin (1:1000, Sigma T7451). 

The following primary antibodies were used for Western blotting: mouse anti-Flag (1:10000, 

M2, Sigma); rabbit anti-GFP (1:10000, ab280, Abcam); mouse anti-α-tubulin (1:6000, DM1A, 

Sigma); rabbit anti-Asl (1:8000); rabbit anti-Asl-N IgG (1:500); rat anti-Ana1-M IgG (1:5000); 

rabbit anti-Cep135-N IgG (1:3000); rabbit anti-Cep135-C IgG (1:5000); rat anti-Sas-4 (1:5000); 

rabbit anti-human Cep135 IgG (1:500); rabbit anti-Cep295 (1:2000). 

Secondary antibodies conjugated with Alexa Fluor 488, 594 or 405 were diluted 1:500 for 

immunofluorescence (Life Technologies); secondary antibodies conjugated with HRP were 

diluted 1:10000 for Western blotting (Jackson ImmunoResearch). 

Cell culture, Transfection, and RNAi  

D.Mel-2 cells (Life Technologies) were grown at 25°C in Express Five SFM (Life Technologies) 

supplemented with L-glutamine (2 mM; Gibco) and penicillin-streptomycin (50 units/ml-50 

µg/ml; Gibco). Transfection of plasmids was performed using X-tremeGENE HP DNA 

Transfection Reagent (Roche). For transient expression, cells were collected and subjected to 

immunostaining, GFP-trap pull-down or glycerol gradient sedimentation after 36 h. To establish 

stable cell lines, 20 µg/ml blasticidin (Life Technologies) was added to the medium 48 h after 

transfection. Established cell lines were authenticated by both western blotting and 

immunostaining. D.Mel-2 cells were transfected with dsRNA using TransFast™ Transfection 

Reagent (Promega). For repeated rounds of depletion, cells were harvested every 4 days and re-
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submitted to the same transfection protocol. RNAi efficiency was tested by Western blotting 

(Supplementary Fig. 2a, all experiments were independently performed three times). 

Double-stranded RNAs (dsRNA) directed against the coding sequence were synthesized 

from templates of Drosophila cDNA clones using T7 RiboMAX Express RNAi System 

(Promega), primers listed in Supplementary Table 1. To selectively knock down endogenous 

proteins, 5’-UTR-3’-UTR hybrid was generated by Overlap Extension PCR and used as 

templates for dsRNA. Full sequences are listed in Supplementary Table 1. 

U2OS cells (ATCC) were cultured at 37°C with 5% CO2 in Dulbecco's Modified Eagle 

Medium (DMEM, Gibco) supplemented with 10% heat inactivated Fetal Bovine Serum (FBS, 

Gibco) and penicillin-streptomycin (50 units/ml-50 µg/ml; Gibco). RNAi was performed using 

RNAiMAX (Life Technologies). siRNAs targeting specific genes (siCep295: 5’-

GUGAUACACUAACAAUUGA-3’4; siCep135-1: 5’-CAAGCAGAUUGAGCUAAGA-3’47; 

siCep135-2: 5’-GACUGAGUGAUGAACUCCUUGUAAA-3’21; siCep135-3: 5’-

GCGAAGAUCUUGCUCUACAAGUUAU-3’21) and a MISSION® siRNA Universal Negative 

Control #1 were obtained from Sigma. Because Cep135 is difficult to be stripped from 

centrioles21, two consecutive RNAi were performed for a total of 6 days using combination of 

three different siRNAs (100 nM each). Cep295 depletion was performed for 3 days (100 nM of 

single siRNA). 

To enrich G2 population, U2OS cells were synchronized by double thymidine (2.5 mM, 

Sigma) block and released into fresh medium for 9 h before subjecting to immunostaining or 

Western-blotting. All experiments in Figure 8 (including RNAi and the following analysis) were 

independently performed three times. 

Structured Illumination Microscopy and Data Processing 
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These procedures were described in9. Briefly, D.Mel-2 cells were plated on Concanavalin A 

(Sigma)-coated coverslips (#1.5, 0.17mm thickness, Zeiss) 3 h prior to fixation. Cells were 

washed with PBS, fixed with pre-cooled methanol for 6 min at -20°C, and washed three times in 

0.1% Triton X-100-PBS. Cells were then blocked with 3% BSA-0.1% Triton X-100-PBS for 30 

min and incubated with the primary antibody overnight at 4°C. Cells were washed again for 

three times in 0.1% Triton X-100-PBS and incubated with the secondary antibody for 45 min at 

room temperature. Coverslips were mounted onto slides using VECTASHIELD mounting 

medium with or without DAPI (VECTOR laboratories). U2OS cells grown on coverslips were 

fixed and immunostained similarly to above, but using 0.1% Tween-PBS instead of Triton X-100 

for the whole procedure. To visualize the centrioles by acetylated tubulin staining, cells were 

first kept on ice for 2 h to depolymerize the cytoplasmic microtubules, pre-extracted with 0.5% 

Triton X-100-PBS for 2 min and fixed with pre-cooled methanol for 10 min at -20°C.  

Super-resolution images were acquired using a Deltavision OMX 3D-SIM System V3 

BLAZE from Applied Precision (GE Healthcare) equipped with 3 sCMOS cameras, 405, 488, 

592.5nm diode laser illumination, an Olympus Plan Apo N 60x 1.42NA oil objective, and 

standard excitation and emission filter sets. Imaging of each channel was done sequentially using 

three angles and five phase shifts of the illumination pattern. The refractive index of the 

immersion oil (Cargille) was adjusted to minimize spherical aberrations. Sections were acquired 

at 0.125 µm z steps.  

Raw OMX data was reconstructed and channel registered in SoftWoRx software version 5.5 

(Applied Precision, GE Healthcare). Reconstructions were carried out using channel specific 

Optical Transfer Functions (OTFs), a Wiener filter of 0.002, and channel specific K0angles. 

OTFs were generated within the SoftWoRx software by imaging 100 nm beads (Life 
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Technologies) using appropriate immersion oils to match the data. Channel registration was 

carried out using the Image Registration parameters generated within the SoftWoRx software 

and checked for accuracy by imaging Tetraspeck beads (Life Technologies) and control samples 

where one primary antibody was labeled with two secondary antibodies. Channel registration 

was accurate to within one pixel. 

To measure the radial distance of different proteins or regions given in Fig. 2c and 7i, the 

line scan and plot profiles of Fiji were applied to centrioles that are perpendicular to the 

coverslips. The distance between two farthest peak intensities of a ring was defined as diameter, 

and radius=diameter/2. Total centriole numbers were stated in the figure legends and SD 

(Standard Deviation), SEM (Standard Error of the Mean) and p value determined using Prism 5. 

To analyze distribution of signals detected in different channels in Fig. 2e, RGB merged files 

were subjected to line scan and RGB profiler. To measure the ratio of Cep135 on daughter and 

mother centrioles in Fig. 5g, the mean intensity was subtracted by the background before 

multiplied by area using Fiji and Excel.  

All experiments were independently performed three times. 

Fluorescence Microscopy 

D.Mel-2 cells were fixed and immunostained as above. Microscopic analysis was performed on a 

Carl Zeiss Axiovert 200M microscope with 40x/1 or 100x/1.4 Plan Apochromat objectives. 

Images were acquired with a Photometrics Cool SNAP HQ2 camera and the image analysis 

software Metamorph (v7.7). All experiments were independently performed three times. 

For co-localization analysis in Fig. 3 and 4, D.Mel-2 cells were co-transfected with indicated 

constructs, plated on Concanavalin A (Sigma)-coated coverslips 3 h prior to fixation. Coverslips 

were then mounted onto slides using VECTASHIELD mounting medium with DAPI (VECTOR 
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laboratories). Protein localization was observed by native GFP or mRFP signal. In the case of 

Flag-tagged constructs, cells were immunostained with anti-Flag antibody as described above.  

Electron Microscopy and Data Processing 

The procedure was described in48. Briefly, cultured cells on coverslips were fixed in 4% 

paraformaldehyde in PBS for 15 min and immersed in 2.5% glutaraldehyde in 0.1 M phosphate 

buffer (pH 7.2) for 2 h at 4ºC. They were then washed three times for 30 min in phosphate buffer, 

postfixed with 1% OsO4 for 1 h at 4ºC, washed once in phosphate buffer, and then in distilled 

water. Samples were stained for 1 h in uranyl acetate. They were washed again and then 

dehydrated in a graded series of ethanol and flat-embedded in a mixture of Epon and Araldite. 

After polymerization for 2 days at 60ºC, the coverslips were removed from the resin after a short 

immersion in liquid nitrogen. Ultrathin serial sections were obtained with a LKB ultratome, 

stained with uranyl acetate and lead citrate, and observed and photographed with a Philips CM10 

electron microscope at 80 kV. 

To measure centriole diameters in Fig. 7g and Supplementary Fig. 4c, cross section images 

were used and a line was drawn between two opposite B-tubules of the microtubule wall. 

Fly Stocks 

Fly stocks were maintained at 25 °C on standard Drosophila food. OregonR (OrR) flies were 

used as wild type control. The ana1 mutant line (w; CyO GFP/Sco; ana1mecB/TM6B GFP) was 

kindly provided by Tomer Avidor-Reiss (University of Toledo, USA) and the line carrying the 

deficiency uncovering ana1 (w; Df(3R)Exel7357/TM6B) was obtained from the Bloomington 

Drosophila Stock Center. The cep135 mutant line (bld10c04199/TM6B) and the line carrying the 

deficiency uncovering cep135 (w; If /CyO act GFP; Df(3L)Brd15/TM6B) were kindly provided 

by Clemens Cabernard (University of Basel, Switzerland). Trans-heterozygous males for ana1 or 
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cep135, obtained by crossing the aforementioned stocks, were used to prepare testes extracts for 

Western blotting or immunofluorescence analysis. polyubiquitin GFP-Ana1/FM7 and 

polyubiquitin Ana1-GFP/FM7 transgenic flies were generated by University of Cambridge 

Department of Genetics Fly Facility, and polyubiquitin GFP-Cep135/CyO was kindly provided 

by Mónica Bettencourt-Dias (Instituto Gulbenkian de Ciência, Portugal). 

Preparation of Testes Extracts 

For Western blot analysis, testes from pharate adults were dissected in PBS (20 pairs) and pestle 

homogenized in 40 µl 2x Laemmli sample buffer (Sigma), incubated on ice for 5 min and boiled. 

Experiments were independently performed twice. 

For immunofluorescence analysis, testes from pharate adults were dissected in PBS, 

transferred to 5% glycerol-PBS and squashed between microscope slide and coverslip. After 

snap freezing in liquid nitrogen, testes on slides were fixed in methanol, rehydrated in 0.5% 

Triton-X100-PBS for 30 seconds, rinsed in PBS for 10 min and incubated with primary 

antibodies (diluted in PBS) at 4°C overnight. Slides were then rinsed for 30 seconds in PBS, 

incubated again in PBS for 10 min and with secondary antibodies (1:200 in PBS) for 4 h at room 

temperature. Finally, slides were rinsed in PBS for 30 seconds followed by a 10 min wash and 

mounting in Vectashield containing DAPI (Vector Laboratories). 

Images were either acquired using Structured Illumination Microscopy as described above, 

or a Zeiss LSM 510 Meta confocal microscope equipped with a 63x oil objective, NA 1.4, using 

the 488 nm laser line of an Argon Ion laser (green), the 561 nm laser line of an DPSS laser (red), 

the 633 nm laser line of a HeNe laser (far red) and a diode laser with a 405 nm laser line (blue). 

Stack of images were acquired at a 0.5 µm z step. Figures shown are the maximum-intensity 
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projections of optical sections prepared with Fiji. All experiments were independently performed 

twice. 

In Vitro Transcription-Translation (IVTT) 

35S-methionine-labelled Cep135, Asl and Sas-6 were expressed in vitro using the TNT T7 Quick 

Coupled Transcription-Translation System (IVTT; Promega) following the procedure described 

earlier11. Briefly, pET-DEST42-T7-Cep135 (90 ng), -Asl (90 ng) or -Sas-6 (90 ng) plasmids 

were added into 11 µl IVTT reaction mixture (9.9 µl TNT Quick Master Mix (Promega, L1170), 

0.9 µl RNasin Plus (Promega), 0.9 µl 50x PIC (Roche) and 0.48 MBq Methionine-L [35S] 

(Perkin Elmer)), and incubated at 30°C for 1.5 h followed by centrifugation at room temperature 

at 21,000g for 5 min. Supernatant (Input) was used in in vitro binding assay. 

In Vitro Binding Assay 

These procedures were described in49. Specifically, MBP or MBP-Ana1 immobilized on beads 

were mixed with 500 µl Binding Buffer (BB: 50 mM HEPES pH 7.5, 150 mM NaCl, 1 mM 

MgCl2, 1 mM EGTA, 1 mM DTT, 0.1% Triton X-100, PIC (Roche), 1 mg/ml BSA) and 5 µl 

IVTT reaction mixture (containing 35S-Met-Sas-6, Cep135 or Asl) and incubated for 3 h at 4°C 

on an end-over-end rotator. Beads were then settled by mild centrifugation and washed 3 times 

with Washing Buffer-1 (WB-1: BB without BSA) by gently pipetting followed by incubation for 

5 min on the rotator. Beads were then washed twice in WB-2 (WB-1 supplemented with 100 mM 

NaCl and 0.1% Triton X-100), resuspended in 20 µl 2x Laemmli sample buffer, boiled and 

subjected to SDS-PAGE. Gels were stained with Bio-Safe Coomassie (Bio-Rad), scanned, dried 

and used for autoradiography. All experiments were independently performed twice. 

GFP-Trap Affinity Purification 
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D.Mel-2 cells were washed in PBS, homogenized in ice cold Extraction Buffer-1 (EB-1: 50 mM 

HEPES pH 7.5, 100 mM K-acetate, 100 mM NaCl, 50 mM KCl, 2 mM MgCl2, 2 mM EGTA, 

0.1% NP-40, 5% glycerol, PIC (Roche), 25 µM MG132) supplemented with 10 U/ml Bensonaze 

(Novagen) by passing through a pre-chilled G25 needle (10 times) followed by incubation on ice 

for 20 min. Lysates were then centrifuged (3,000g, 4°C, 20 min) and supernatant (Input) were 

subjected to GFP-Trap purification (magnetic agarose beads, ChromoTek) as described before50. 

After final wash, beads were mixed with 2x Laemmli sample buffer, boiled and subjected to 

Western blotting. All experiments were independently performed three times. 

Glycerol gradient sedimentation 

D.Mel-2 cells were washed in PBS and lysed in EB-2 buffer (EB-1 supplemented with 1 mM 

DTT, 25 µM MG132 and 20U/ml Benzonase) as above. After centrifugation (2000 g, 4 °C, 10 

min) pellets were resuspended in EB-2 and loaded onto a 11 ml 10-30% linear glycerol gradient 

made in EB-2 buffer (without MG132 and NP-40). Sedimentation was carried out by 

centrifugation in a SW40 Ti rotor at 35,000 rpm (RCFmax=217,874) for 20 h at 4°C. Fractions 

(350 µl each) were collected from the top of the gradient and precipitated with 25% 

Trichloroacetic-acid followed by ice cold acetone wash. Precipitates were resuspended in 2x 

Laemmli sample buffer, boiled and subjected to Western-blotting analysis. Experiments were 

independently performed twice. 
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Supplementary Information 

Supplementary Figure Legends 

 

Supplementary Figure 1. Wide-field images of cells presented in Figure 1.  

(a-c) Complete images of cells from which super-resolution images of centrioles have been 

selected for Figure 1a (a), 1c (b) and 1e (c). DNA staining indicates different cell cycle stage. 

Scale bars, 5 µm. 

 

Supplementary Figure 2. Antibody controls, RNAi efficiency and mutant fly verification. 

(a) Efficiency of RNAi and specificity of antibodies. Antibodies against the C-terminal region of 

Drosophila Cep135, the 622-981aa segment of Ana1 (Ana1-M), full-length Asl, and the 

301-901aa segment of Sas-4 were tested on Western blots of D.Mel-2 lysates either depleted for 

respective endogenous proteins or treated with double-stranded RNA (dsRNA) targeting GST 

(control). Note that all four antibodies recognize endogenous proteins that show reduction in 

protein levels after RNAi. UTR indicates dsRNA directed against the untranslated regions of 

respective mRNA, #N indicates dsRNA directed against the N-terminal part of Ana1 coding 

region and #C indicates C-terminally directed dsRNA. Affinity purified antibody (IgG) 

recognizing 1-300aa of Asl was tested by Western blotting using recombinant proteins (Asl-N, 
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residues 1-300 and Asl-C, residues 693-994; right panel); it recognizes only the N-terminus of 

Asl in contrast to serum raised against the full-length protein. * indicates non-specific bands. 

(b) Western blot analysis of testes extracts from bld10c04199/Df(3L)Brd15 mutant or OregonR 

(OrR) males using antibody raised against the N-terminal part of Cep135 (Cep135-1-225aa). 

Note that the full-length protein is depleted while a truncated fragment of Cep135 is present in 

bld10c04199/Df(3L)Brd15 extract. D.Mel-2 lysates depleted of GST or Cep135 were used in 

parallel to test the specificity of the antibody. * indicates non-specific band. 

 

Supplementary Figure 3. Functional tests of tagged constructs. 

(a-c) N- and C-terminally tagged Cep135, Ana1 and Asl are functional. D.Mel-2 cells stably 

expressing GFP-Cep135 or Cep135-GFP (a), GFP-Ana1 or Ana1-GFP (b), Flag-Asl or Asl-GFP 

(c) were depleted of endogenous Cep135, Ana1 or Asl with dsRNA directed against the UTRs. 

Wild type D.Mel-2 cells were used as control. Cells were immunostained to reveal Dplp and 

centrosome numbers were counted. Note that tagged Cep135, Ana1 and Asl are able to rescue 

the depletion of endogenous counterparts and support centriole duplication. n=3 independent 

experiments each scoring 300 cells. Error bars indicate mean +/- SD (Standard Deviation). 

 

Supplementary Figure 4. Ana1 knockdown prevents centriole duplication. 

(a, b) D.Mel-2 cells were transfected with dsRNA directed against GST (control), the N- or 

C-terminal part of Ana1 coding sequence (#N: 4-503bp; #C: 3509-4040bp of CDS), or the UTR 
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for two rounds (4 days per round). Cells were fixed after each round of RNAi and 

immunostained to reveal Dplp and DNA. Representative images (a) and quantification (b) show 

rapid centrosome loss after Ana1 knockdown. 84% (#N), 90% (#C) and 52% (UTR) of cells 

contained less than two centrosomes after 4 days, rising to 92%, 93% and 63% respectively after 

two consecutive rounds of depletion. Scale bar in (a), 20 µm. (b) n=3 independent experiments 

each scoring 300 cells; error bars, mean+/- SD. RNAi efficiency is indicated by Western blotting 

in Supplementary Fig. 2a. 

(c, d) D.Mel-2 cells were depleted of Ana1 and subjected to electron microscopy analysis. No 

obvious changes were found in diameter (n=13 and 10, respectively), length (n=14 and 9, 

respectively) or 9-fold symmetry of the centrioles (c). Error bars indicate SEM (Standard Error 

of the Mean). NS, not significant (two-tailed student’s t-test p>0.1). An example is shown of 

successful disengagement of mother and daughter centrioles in anaphase cells (c, upper right 

panel). Serial sections show that Ana1-depleted centrosomes are devoid of daughter centrioles (d, 

upper panel). Quantification of random sections of Ana1-depleted cells reveals more single 

centrioles than in wild type D.Mel-2 cells (d, lower panel; n=29 centrosomes from D.Mel-2 and 

23 from Ana1-depleted samples). Scale bars, 100 nm. 

 

Supplementary Figure 5. Synthetic linkage between Cep135 and Ana1 C-terminal 

fragment can support centriole duplication in the absence of endogenous Ana1. 
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(a) GFP-Cep135 was transiently co-expressed with Ana1-C-mRFP containing GBP 

(GFP-binding protein) sequence or not in D.Mel-2 cells. Representative images show that GBP 

can mediate binding of Ana1-C-mRFP to GFP-Cep135 via its affinity to GFP. As a result in the 

presence of GFP-Cep135, GBP-Ana1-C-mRFP is ectopically localized to centrosome (upper 

panel), whereas Ana1-C-mRFP is diffuse in cytoplasm (lower panel). Scale bar, 5 µm. 

(b, c) D.Mel-2 cells co-expressing GFP-Cep135 (constitutively) with Ana1-C-mRFP or 

GBP-Ana1-C-mRFP (induced with 700 µM CuSO4 at the same time of the depletion) were 

depleted of endogenous Ana1 (Ana1#N dsRNA, 4 days) and immunostained to reveal Dplp. 

Representative images (c) show that GBP-Ana1-C-mRFP can complement the loss of 

endogenous Ana1 for centriole duplication, but Ana1-C-mRFP cannot. Scale bar, 20 µm. 

 

Supplementary Figure 6. Uncropped scanned images of immunoblots, autoradiograms and 

stained gels.  

The cropped regions are indicated by red boxes. 

 

Supplementary Table 1. List of primers and DNA templates for making dsRNA. 

dsRNAs directed against the coding sequence were synthesized from templates of appropriate 

Drosophila cDNA clones using the primers listed (upper section). To selectively knock down the 
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endogenous proteins, the 5’-UTR-3’-UTR hybrid was first generated by Overlap Extension PCR 

and used as templates for dsRNA. Full sequences are listed (lower section). 

 















Primers for making dsRNA against coding region

GST-F 5’-TAATACGACTCACTATAGGGAGATTTGTATGAGCGCGATGAAG-3’
GST-R 5’-TAATACGACTCACTATAGGGAGAAACCAGATCCGATTTTGGAG-3’
Asl-F 5’-TAATACGACTCACTATAGGGAGAATGAACACGCCAGGTATAAG-3’
Asl-R 5’-TAATACGACTCACTATAGGGAGATATTGGAGCACGTCTCTTT-3’
Ana1#N-F 5’-TAATACGACTCACTATAGGGAGAGCTCTGCAGCTAACAGTAAA-3’
Ana1#N-R 5’-TAATACGACTCACTATAGGGAGATCCTCCACTATGGGCGTTTG-3’
Ana1#C-F 5’-TAATACGACTCACTATAGGGAGATGATCACGAAAGTGCGCGAGGAGAA-3’
Ana1#C-R 5’-TAATACGACTCACTATAGGGAGATGATCAGCATCCAACCGCGACAGAT-3’
Cep135-F 5’-TAATACGACTCACTATAGGGAGACAGAAGACCACCACAACGACCAAAG-3’
Cep135-R 5’-TAATACGACTCACTATAGGGAGAATTGGAAGCAAAGCCACCGGTCAGT-3’

Full sequences of 5'-UTR-3'-UTR hybrid as templates for dsRNA

Ana1

5’-
TGTGCCTTGAGTGCGTGCTACTTACCAGCTGGTATATTTTAGACGCATGTAAAT
TCTAGTACATTCAATTATTCATCTACGGTCACACTGCCGCTTGGGAGGAATTTTT
AAAGACGTTGGGTTGTTTGATTTTACGCTCAAACTTGTTTCGATTTCTACTGCG
TAAATGCTGCCCCACATACGAATTTATTACATATATCGATAGAGCAGTCGCCGA
ACTTTTAATTCGTTTGTTTAGGTTTTAGATTATATTATCCATTTTATGACAATTATT
TATATTTTACTTACTTTGCAATTTTGTGTCAAAAAATGACTATCGAAAAAGATTG
TATAAAATTTACTCAATAAGTTAAATGTACAATTTTATTACCAATTTGTGTGAAA
CTTATTTATATTTTAATAAACCCGACGATTATTTAT-3’

Cep135

5’-
TATCGGTTGAAGTCCGGTTTTGTTTTGATTTGATTGAATAGCATTGTTTTCATTG
CGCATTTTCTGAAATTTAGGGCATTTAGGAGAAAACTTGTGATTTTTTTGCTGT
TATTAGTGTTTTCCCATGAATATCAGACTCTTTAATTGATAGTATACTTATGCATA
CGCTTCTTGTTTATTATGTTAACTCAAATTTATTGTTTGGCTGGGTTATCGAAATT
GTAAAAATATAAGATTGTCAAAAATAAATAAAGATTTAATGCAACG-3’

Asl

5’-
TTGCCTACGAAAATAGCGCCTGCGCCTCGGAATTTATTTGAATTTGATGCTTGT
GGCGTCCCCTTAGCCGAATGACTTAGGAAAATATATATATGTATATGTAGGTCTC
TTTAGTGGGATATCGTTACTGCATGCACTGCCAAATTGTCTAAACAAATAAAAG
TCGCTGTACATTCCTAAA-3’

abu
打字机文本
Fu et al., Supplementary Table 1
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