461 research outputs found

    Cable-stayed glass façades - 15 years of innovation at the cutting edge

    Get PDF
    Today’s demand for highly transparent building envelopes calls for innovativesolutions. Cable-stayed glass façades make it possible to dematerialize the buildingenvelope so as to make it almost imperceptible. Werner Sobek has designed a greatnumber and variety of cable-stayed façades. The primary structural system carryingmost of these façades consists of straight tension members (e.g. tension rods,cables), typically in a parallel arrangement. The tension members transfer the deadload of the glazing very efficiently to the supports. Under wind load the membersundergo large deflections thus activating their lateral stiffness. As a result, thedetailing of these façades requires innovative design approaches and special care toallow for such large deflections. Besides this, each project has its individualchallenges such as a complex geometry, large openings, difficult edge conditions,warping of IG units, bomb blast requirements, etc. The present article gives anoverview of the development of cable-stayed façades as designed by Werner Sobekover the last 15 years. The overview includes completed projects as well as façadescurrently under construction or in the design phase

    High-throughput screening of multifunctional nanocoatings based on combinations of polyphenols and catecholamines

    Get PDF
    Biomimetic surface coatings based on plant polyphenols and catecholamines have been used broadly in a variety of applications. However, the lack of a rational cost-effective platform for screening these coatings and their properties limits the true potential of these functional materials to be unleashed. Here, we investigated the oxidation behavior and coating formation ability of a library consisting of 45 phenolic compounds and catecholamines. UV–vis spectroscopy demonstrated significant acceleration of oxidation and polymerization under UV irradiation. We discovered that several binary mixtures resulted in non-additive behavior (synergistic or antagonistic effect) yielding much thicker or thinner coatings than individual compounds measured by ellipsometry. To investigate the properties of coatings derived from new combinations, we used a miniaturized high-throughput strategy to screen 2,532 spots coated with single, binary, and ternary combinations of coating precursors in one run. We evaluated the use of machine learning models to learn the relation between the chemical structure of the precursors and the thickness of the nanocoatings. Formation and stability of nanocoatings were investigated in a high-throughput manner via discontinuous dewetting. 30 stable combinations (hits) were used to tune the surface wettability and to form water droplet microarray and spot size gradients of water droplets on the coated surface. No toxicity was observed against eukaryotic HeLa cells and Pseudomonas aeruginosa (strain PA30) bacteria after 24 h incubation at 37 °C. The strategy introduced here for high-throughput screening of nanocoatings derived from combinations of coating precursors enables the discovery of new functional materials for various applications in science and technology in a cost-effective miniaturized manner

    Stronger diversity effects with increased environmental stress : a study of multitrophic interactions between oak, powdery mildew and ladybirds

    Get PDF
    Recent research has suggested that increasing neighbourhood tree species diversity may mitigate the impact of pests or pathogens by supporting the activities of their natural enemies and/or reducing the density of available hosts. In this study, we attempted to assess these mechanisms in a multitrophic study system of young oak (Quercus), oak powdery mildew (PM, caused by Erysiphe spp.) and a mycophagous ladybird (Psyllobora vigintiduo-punctata). We assessed ladybird mycophagy on oak PM in function of different neighbourhood tree species compositions. We also evaluated whether these species interactions were modulated by environmental conditions as suggested by the Stress Gradient Hypothesis. We adopted a complementary approach of a field experiment where we monitored oak saplings subjected to a reduced rainfall gradient in a young planted forest consisting of different tree species mixtures, as well as a lab experiment where we independently evaluated the effect of different watering treatments on PM infections and ladybird mycophagy. In the field experiment, we found effects of neighbourhood tree species richness on ladybird mycophagy becoming more positive as the target trees received less water. This effect was only found as weather conditions grew drier. In the lab experiment, we found a preference of ladybirds to graze on infected leaves from trees that received less water. We discuss potential mechanisms that might explain this preference, such as emissions of volatile leaf chemicals. Our results are in line with the expectations of the Natural Enemies Hypothesis and support the hypothesis that biodiversity effects become stronger with increased environmental stress

    A set-based approach for coordination of multi-level collaborative design studies

    Get PDF
    Presented in this paper is a framework for design coordination of hierarchical (multi-level) design studies. The proposed framework utilizes margin management and set-based design principles for handling the challenges associated with vertical and horizontal design coordination. The former is based on flexible constraints/margins, while the latter is handled by intersecting feasible design spaces across different teams. The framework is demonstrated with an industrial test-case from the UK ATI APPROCONE (Advanced PROduct CONcept analysis Environment) project

    False negative results from using common PCR reagents

    Get PDF
    Background\ud The sensitivity of the PCR reaction makes it ideal for use when identifying potentially novel viral infections in human disease. Unfortunately, this same sensitivity also leaves this popular technique open to potential contamination with previously amplified PCR products, or "carry-over" contamination. PCR product carry-over contamination can be prevented with uracil-DNA-glycosylase (UNG), and it is for this reason that it is commonly included in many commercial PCR master-mixes. While testing the sensitivity of PCR assays to detect murine DNA contamination in human tissue samples, we inadvertently discovered that the use of this common PCR reagent may lead to the production of false-negative PCR results.\ud \ud Findings\ud We show here that contamination with minute quantities of UNG-digested PCR product or any negative control PCR reactions containing primer-dimers regardless of UNG presence can completely block amplification from as much as 60 ng of legitimate target DNA.\ud \ud Conclusions\ud These findings could potentially explain discrepant results from laboratories attempting to amplify MLV-related viruses including XMRV from human samples, as none of the published reports used internal-tube controls for amplification. The potential for false negative results needs to be considered and carefully controlled in PCR experiments, especially when the target copy number may be low - just as the potential for false positive results already is

    International Delegations and the Values of Federalism

    Get PDF
    Inland water sediments receive large quantities of terrestrial organic matter(1-5) and are globally important sites for organic carbon preservation(5,6). Sediment organic matter mineralization is positively related to temperature across a wide range of high-latitude ecosystems(6-10), but the situation in the tropics remains unclear. Here we assessed temperature effects on the biological production of CO2 and CH4 in anaerobic sediments of tropical lakes in the Amazon and boreal lakes in Sweden. On the basis of conservative regional warming projections until 2100 (ref. 11), we estimate that sediment CO2 and CH4 production will increase 9-61% above present rates. Combining the CO2 and CH4 as CO2 equivalents (CO(2)eq; ref. 11), the predicted increase is 2.4-4.5 times higher in tropical than boreal sediments. Although the estimated lake area in low latitudes is 3.2 times smaller than that of the boreal zone, we estimate that the increase in gas production from tropical lake sediments would be on average 2.4 times higher for CO2 and 2.8 times higher for CH4. The exponential temperature response of organic matter mineralization, coupled with higher increases in the proportion of CH4 relative to CO2 on warming, suggests that the production of greenhouse gases in tropical sediments will increase substantially. This represents a potential large-scale positive feedback to climate change

    The performance of FLake in the Met Office Unified Model

    Get PDF
    We present results from the coupling of FLake to the Met Office Unified Model (MetUM). The coupling and initialisation are first described, and the results of testing the coupled model in local and global model configurations are presented. These show that FLake has a small statistical impact on screen temperature, but has the potential to modify the weather in the vicinity of areas of significant inland water. Examination of FLake lake ice has revealed that the behaviour of lakes in the coupled model is unrealistic in some areas of significant sub-grid orography. Tests of various modifications to ameliorate this behaviour are presented. The results indicate which of the possible model changes best improve the annual cycle of lake ice. As FLake has been developed and tuned entirely outside the Unified Model system, these results can be interpreted as a useful objective measure of the performance of the Unified Model in terms of its near-surface characteristics

    Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes

    Get PDF
    Remote lakes are usually unaffected by direct human influence, yet they receive inputs of atmospheric pollutants, dust, and other aerosols, both inorganic and organic. In remote, alpine lakes, these atmospheric inputs may influence the pool of dissolved organic matter, a critical constituent for the biogeochemical functioning of aquatic ecosystems. Here, to assess this influence, we evaluate factors related to aerosol deposition, climate, catchment properties, and microbial constituents in a global dataset of 86 alpine and polar lakes. We show significant latitudinal trends in dissolved organic matter quantity and quality, and uncover new evidence that this geographic pattern is influenced by dust deposition, flux of incident ultraviolet radiation, and bacterial processing. Our results suggest that changes in land use and climate that result in increasing dust flux, ultraviolet radiation, and air temperature may act to shift the optical quality of dissolved organic matter in clear, alpine lakes
    • …
    corecore