250 research outputs found

    The neural networks underlying reappraisal of empathy for pain

    Get PDF
    Emotion regulation plays a central role in empathy. Only by successfully regulating our own emotions can we reliably use them in order to interpret the content and valence of others’ emotions correctly. In an functional magnetic resonance imaging (fMRI)-based experiment, we show that regulating one’s emotion via reappraisal modulated biased emotional intensity ratings following an empathy for pain manipulation. Task-based analysis revealed increased activity in the right inferior frontal gyrus (IFG) when painful emotions were regulated using reappraisal, whereas empathic feelings that were not regulated resulted in increased activity bilaterally in the precuneus, supramarginal gyrus and middle frontal gyrus (MFG), as well as the right parahippocampal gyrus. Functional connectivity analysis indicated that the right IFG plays a role in the regulation of empathy for pain, through its connections with regions in the empathy for pain network. Furthermore, these connections were further modulated as a function of the type of regulation used: in sum, our results suggest that accurate empathic judgment (i.e. empathy that is unbiased) relies on a complex interaction between neural regions involved in emotion regulation and regions associated with empathy for pain. Thus, demonstrating the importance of emotion regulation in the formulation of complex social systems and sheds light on the intricate network implicated in this complex process

    The role of oxytocin in empathy to the pain of conflictual out-group members among patients with schizophrenia

    Get PDF
    Background.Oxytocin (OT) is associated with our ability to empathize and has been shown to play a major role in mediating social behaviors within the context of intergroup dynamics. Schizophrenia is associated with impaired empathy, and with a dysfunctional oxytocinergic system. The effect of OT on the empathic responses of patients with schizophrenia within the context of intergroup relationships has not been studied. The present study examined the effect of OT on the patients' empathic responses to pain experienced by in-group, conflictual out-group and neutral out-group members.Method.In a double-blind, placebo-controlled, within-subject cross-over design, the responses on the Pain Evaluation Task of 28 male patients with schizophrenia were compared to 27 healthy male controls. All participants received a single intranasal dose of 24 IU OT or placebo, 1 week apart.Results.OT induced an empathy bias in the healthy controls towards the conflictual out-group members. Although this effect was absent in the patient group, OT seems to heighten an empathic bias in the patient group towards the in-group members when rating non-painful stimuli.Conclusions.The study demonstrates that the administration of OT can result in empathic bias towards adversary out-group members in healthy controls but not in patients with schizophrenia. However, the OT-induced bias in both the patients (in the no-pain condition towards the in-group members) and the healthy controls (in the no-pain and pain conditions towards the adversary out-group) suggests that OT enhances the distinction between conflictual in-group and out-group members.</jats:sec

    Mindblind eyes: an absence of spontaneous theory of mind in Asperger syndrome

    Get PDF
    Adults with Asperger syndrome can understand mental states such as desires and beliefs (mentalizing) when explicitly prompted to do so, despite having impairments in social communication. We directly tested the hypothesis that such individuals nevertheless fail to mentalize spontaneously. To this end, we used an eye-tracking task that has revealed the spontaneous ability to mentalize in typically developing infants. We showed that, like infants, neurotypical adults’ (n = 17 participants) eye movements anticipated an actor’s behavior on the basis of her false belief. This was not the case for individuals with Asperger syndrome (n = 19). Thus, these individuals do not attribute mental states spontaneously, but they may be able to do so in explicit tasks through compensatory learning

    No Evidence for Emotional Empathy in Chickens Observing Familiar Adult Conspecifics

    Get PDF
    The capacity of animals to empathise is of high potential relevance to the welfare of group-housed domestic animals. Emotional empathy is a multifaceted and multilayered phenomenon which ranges from relatively simple processes such as emotional matching behaviour to more complex processes involving interaction between emotional and cognitive perspective taking systems. Our previous research has demonstrated that hens show clear behavioural and physiological responses to the mild distress of their chicks. To investigate whether this capacity exists outside the mother/offspring bond, we conducted a similar experiment in which domestic hens were exposed to the mild distress of unrelated, but familiar adult conspecifics. Each observer hen was exposed to two replicates of four conditions, in counterbalanced order; control (C); control with noise of air puff (CN); air puff to conspecific hen (APC); air puff to observer hen (APH). During each test, the observer hens' behaviour and physiology were measured throughout a 10 min pre-treatment and a 10 min treatment period. Despite showing signs of distress in response to an aversive stimulus directed at themselves (APH), and using methodology sufficiently sensitive to detect empathy-like responses previously, observer hens showed no behavioural or physiological responses to the mild distress of a familiar adult conspecific. The lack of behavioural and physiological response indicates that hens show no basis for emotional empathy in this context

    "I know that you know that I know": neural substrates associated with social cognition deficits in DM1 patients

    Get PDF
    Myotonic dystrophy type-1 (DM1) is a genetic multi-systemic disorder involving several organs including the brain. Despite the heterogeneity of this condition, some patients with non-congenital DM1 can present with minimal cognitive impairment on formal testing but with severe difficulties in daily-living activities including social interactions. One explanation for this paradoxical mismatch can be found in patients' dysfunctional social cognition, which can be assessed in the framework of the Theory of Mind (ToM). We hypothesize here that specific disease driven abnormalities in DM1 brains may result in ToM impairments. We recruited 20 DM1 patients who underwent the "Reading the Mind in the Eyes" and the ToM-story tests. These patients, together with 18 healthy controls, also underwent resting-state functional MRI. A composite Theory of Mind score was computed for all recruited patients and correlated with their brain functional connectivity. This analysis provided the patients' "Theory of Mind-network", which was compared, for its topological properties, with that of healthy controls. We found that DM1 patients showed deficits in both tests assessing ToM. These deficits were associated with specific patterns of abnormal connectivity between the left inferior temporal and fronto-cerebellar nodes in DM1 brains. The results confirm the previous suggestions of ToM dysfunctions in patients with DM1 and support the hypothesis that difficulties in social interactions and personal relationships are a direct consequence of brain abnormalities, and not a reaction symptom. This is relevant not only for a better pathophysiological comprehension of DM1, but also for non-pharmacological interventions to improve clinical aspects and impact on patients' success in life

    Simple mindreading abilities predict complex theory of mind: developmental delay in autism spectrum disorders

    Get PDF
    Theory of Mind (ToM) is impaired in individuals with Autism Spectrum Disorders (ASD). The aims of this study were to: i) examine the developmental trajectories of ToM abilities in two different mentalizing tasks in children with ASD compared to TD children; and ii) to assess if a ToM simple test known as Eyes-test could predict performance on the more advanced ToM task, i.e. Comic Strip test. Based on a sample of 37 children with ASD and 55 TD children, our results revealed slower development at varying rates in all ToM measures in children with ASD, with delayed onset compared to TD children. These results could stimulate new treatments for social abilities, which would lessen the social deficit in ASD

    How We Know It Hurts: Item Analysis of Written Narratives Reveals Distinct Neural Responses to Others' Physical Pain and Emotional Suffering

    Get PDF
    People are often called upon to witness, and to empathize with, the pain and suffering of others. In the current study, we directly compared neural responses to others' physical pain and emotional suffering by presenting participants (n = 41) with 96 verbal stories, each describing a protagonist's physical and/or emotional experience, ranging from neutral to extremely negative. A separate group of participants rated “how much physical pain”, and “how much emotional suffering” the protagonist experienced in each story, as well as how “vivid and movie-like” the story was. Although ratings of Pain, Suffering and Vividness were positively correlated with each other across stories, item-analyses revealed that each scale was correlated with activity in distinct brain regions. Even within regions of the “Shared Pain network” identified using a separate data set, responses to others' physical pain and emotional suffering were distinct. More broadly, item analyses with continuous predictors provided a high-powered method for identifying brain regions associated with specific aspects of complex stimuli – like verbal descriptions of physical and emotional events.United States. Air Force Office of Scientific Research (Office of Naval Research, grant number N000140910845

    Prefrontal Cortex Glutamate Correlates with Mental Perspective-Taking

    Get PDF
    Background: Dysfunctions in theory of mind and empathic abilities have been suggested as core symptoms in major psychiatric disorders including schizophrenia and autism. Since self monitoring, perspective taking and empathy have been linked to prefrontal (PFC) and anterior cingulate cortex (ACC) function, neurotransmitter variations in these areas may account for normal and pathological variations of these functions. Converging evidence indicates an essential role of glutamatergic neurotransmission in psychiatric diseases with pronounced deficits in empathy. However, the role of the glutamate system for different dimensions of empathy has not been investigated so far. Methodology/Principal Findings: Absolute concentrations of cerebral glutamate in the ACC, left dorsolateral PFC and left hippocampus were determined by 3-tesla proton magnetic resonance spectroscopy (1H-MRS) in 17 healthy individuals. Three dimensions of empathy were estimated by a self-rating questionnaire, the Interpersonal Reactivity Index (IRI). Linear regression analysis showed that dorsolateral PFC glutamate concentration was predicted by IRI factor ‘‘perspective taking’’ (T = 22.710, p = 0.018; adjusted alpha-level of 0.017, Bonferroni) but not by ‘‘empathic concern’ ’ or ‘‘personal distress’’. No significant relationship between IRI subscores and the glutamate levels in the ACC or left hippocampus was detected. Conclusions/Significance: This is the first study to investigate the role of the glutamate system for dimensions of theory of mind and empathy. Results are in line with recent concepts that executive top-down control of behavior is mediated b

    Brain Activation Patterns Characterizing Different Phases of Motor Action: Execution, Choice and Ideation.

    Get PDF
    Motor behaviour is controlled by a large set of interacting neural structures, subserving the different components involved in hierarchical motor processes. Few studies have investigated the neural substrate of higher-order motor ideation, i.e. the mental operation of conceiving a movement. The aim of this functional magnetic resonance imaging study was to segregate the neural structures involved in motor ideation from those involved in movement choice and execution. An index finger movement paradigm was adopted, including three different conditions: performing a pre-specified movement, choosing and executing a movement and ideating a movement of choice. The tasks involved either the right or left hand, in separate runs. Neuroimaging results were obtained by comparing the different experimental conditions and computing conjunction maps of the right and left hands for each contrast. Pre-specified movement execution was supported by bilateral fronto-parietal motor regions, the cerebellum and putamen. Choosing and executing finger movement involved mainly left fronto-temporal areas and the anterior cingulate. Motor ideation activated almost exclusively left hemisphere regions, including the inferior, middle and superior frontal regions, middle temporal and middle occipital gyri. These findings show that motor ideation is controlled by a cortical network mainly involved in abstract thinking, cognitive and motor control, semantic and visual imagery processes
    • 

    corecore