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Abstract

People are often called upon to witness, and to empathize with, the pain and suffering of others. In the current study, we
directly compared neural responses to others’ physical pain and emotional suffering by presenting participants (n = 41) with
96 verbal stories, each describing a protagonist’s physical and/or emotional experience, ranging from neutral to extremely
negative. A separate group of participants rated ‘‘how much physical pain’’, and ‘‘how much emotional suffering’’ the
protagonist experienced in each story, as well as how ‘‘vivid and movie-like’’ the story was. Although ratings of Pain,
Suffering and Vividness were positively correlated with each other across stories, item-analyses revealed that each scale was
correlated with activity in distinct brain regions. Even within regions of the ‘‘Shared Pain network’’ identified using a separate
data set, responses to others’ physical pain and emotional suffering were distinct. More broadly, item analyses with
continuous predictors provided a high-powered method for identifying brain regions associated with specific aspects of
complex stimuli – like verbal descriptions of physical and emotional events.

Citation: Bruneau E, Dufour N, Saxe R (2013) How We Know It Hurts: Item Analysis of Written Narratives Reveals Distinct Neural Responses to Others’ Physical
Pain and Emotional Suffering. PLoS ONE 8(4): e63085. doi:10.1371/journal.pone.0063085

Editor: Katsumi Watanabe, University of Tokyo, Japan

Received October 10, 2012; Accepted March 30, 2013; Published April 26, 2013

Copyright: � 2013 Bruneau et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding for this work was provided by the Air Force Office of Scientific Research, managed through the Office of Naval Research, grant number
N000140910845. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ebruneau@mit.edu

Introduction

At the 1994 Olympics, the young running phenomenon Mary

Decker turned the corner in the 3000-meter race she was favoured

to win, and then suddenly collided with her running nemesis, Zola

Budd, falling hard to the ground on her hip. A picture captures the

moment as Mary Decker, tears streaming down her face and

mouth open in anguish, watches as the runners continue without

her. People who saw that event first hand, who have seen the

Pulitzer prize-winning photograph, or even who just read this brief

verbal description of the event, respond to two distinct (though

related) aspects of Decker’s experience: the physical pain in her

injured body, and the emotional suffering as she watched her

Olympic dreams recede in front of her.

In real life, misfortunes often combine physical pain and

emotional suffering. Events that are emotionally painful without

a direct physical cause (grieving over the loss of a loved one, or

agonizing over unrequited love) are described in language

borrowed from physical pain (‘‘feeling like you were hit in the

gut’’, ‘‘love hurts’’). Conversely, simple physical injuries neverthe-

less elicit strong emotions: fear, anger, anxiety, shame.

When watching or reading about these events, do we recognize

another person’s physical pain and understand their emotional

suffering using a single unified neural system? Or are there distinct

neural systems for these two processes? Recent neuroimaging

studies have found evidence both hypotheses. On the one hand,

a group of brain regions collectively called the ‘Shared Pain

network,’ including parts of bilateral anterior insula (AI) and

anterior middle cingulate cortex (AMCC), are recruited both when

participants experience physical pain, and when they observe

others experiencing similar pain [1–7] (but see [8,9]). Activity in

AI and AMCC is correlated with trial-by-trial measurements of

the intensity of physical pain experienced [10] or observed [11].

The response in these regions is influenced by the affective aspects

of painful experiences, and not just the sensory aspects (for more

details see [12]). For example, activity in insula and AMCC is

modulated by participants’ anxiety and fear associated with

anticipating pain, even prior to any actual painful sensation

[13,14]. Finally, there is evidence that these same regions are

recruited when experiencing, or witnessing another person

experience, purely ‘‘social’’ suffering, e.g. during exclusion from

a social interaction [15,16]. These results have been interpreted as

evidence that AI and AMCC are the primary brain regions

involved in responses to others’ physical and emotional suffering.

On the other hand, other recent studies find that thinking about

another person’s feelings of guilt, embarrassment and/or grief does

not elicit activity in AI or AMCC [17,18]. Rather, thinking about

another person’s feelings seems to predominantly lead to activity in

a region of medial prefrontal cortex (DMPFC). The DMPFC is

active while participants read verbal stories describing individuals

experiencing emotional loss [19], and while participants read

stories or look at cartoons, and then make inferences about the

characters’ emotions [20,21]. Individuals with more activity in

DMPFC while observing others’ suffering later offer more help to

alleviate that suffering [16,22], and individuals who reported more

frequently helping friends in their daily lives (in a diary study) show
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greater DMPFC response to depictions of emotional suffering

[23]. These results suggest that AI and AMCC are predominantly

recruited when witnessing others in physical pain, and DMPFC is

more implicated in empathic responses to emotional suffering.

One interpretive challenge for prior studies, however, may be

that – as in our initial example – witnessing another person’s

misfortune often carries elements of both physical pain and

emotional suffering. Watching someone receive an electric shock,

or be poked by a painful needle, we may spontaneously anticipate

their fear and sadness, as well as their physical discomfort. Hearing

about someone heading into a terrifying final exam, we may

spontaneously imagine the clenched gut and sweaty palms of their

physical experience. How can these correlated features of

experience be separated in an experiment?

The present study sought to disentangle the naturally con-

founded experiences of witnessing physical pain and emotional

suffering using a parametric item-analysis [24]. In the study,

participants read verbal stories that varied in how much physical

pain and how much emotional suffering the protagonist endured.

We obtained behavioral ratings of each story from a separate

group of participants, on how much physical pain and emotional

suffering the main character experienced, and how vivid the verbal

description was; we then compared these ratings with brain

responses to each story across participants.

These data represent a subset of the data that were analyzed

previously [25] (see methods for details). As with most neuroima-

ging studies, stories in this previous analysis were assigned to

categories based on the subjective judgment of the experimenter:

for example, a story about a boy who falls while walking on a picket

fence and is left hanging by his broken leg is categorized as

‘‘Physical Pain’’, and a story about a father and son who find out

that the child has terminal cancer is categorized as ‘‘Emotional

Pain’’. Within a condition, the intensity of pain and suffering

inevitably varied, and this was treated as a source of noise: the

story about the boy with the broken leg and a story about a girl

who burns her finger on a hot light bulb are treated equally as

‘‘Physical Pain’’ items. However, this standard fMRI analysis

technique ignores two important points: first, physical pain and

emotional suffering are conflated in each category (the boy left

hanging on the fence certainly felt physical pain, but also certainly

suffered from the terror, embarrassment and confusion); and

second, variability in the stories could help to illuminate brain

regions that are sensitive to that variation, rather than merely

being treated as noise. Therefore, in the present item analysis

[26,27] we use independent ratings to simultaneously characterize

each item across multiple dimensions (e.g. both how much

physical pain and how much emotional suffering each story

depicts), and treat variability of items (e.g. burning a finger versus

breaking a leg) within ‘conditions’ as an opportunity for additional

statistical leverage on the effects of interest. Since so many

phenomena of interest to social neuroscience are continuous

rather than categorical (e.g. fear, disgust, pain), and inter-related

rather than orthogonal (e.g. pain and suffering, shame and

humiliation), this analysis strategy could be leveraged effectively in

other studies involving complex social stimuli, and therefore could

be of great utility to social cognitive neuroscience.

Methods

Participants
fMRI data were collected from 41 naı̈ve right-handed

participants (18–37 years old (mean 23.064.8 s.d.), 25 females).

A separate group of fourteen participants (19–33 years old (mean

23.564.1 s.d.), 8 female) engaged in the localizer experiment. The

study protocol was approved by MIT’s Committee on the Use of

Humans as Experimental Subjects, and was conducted at the

Athinoula A. Martinos Imaging Center in the McGovern Institute

for Brain Research at the Massachusetts Institute of Technology.

All participants were proficient English speakers, had normal or

corrected to normal vision, gave written informed consent, and

were compensated for their time.

The item ratings were obtained from approximately 30

‘‘workers’’ per story on Amazon’s Mechanical Turk (mTurk), an

online interface; stories were presented one at a time, and

individual workers rated stories ad libitum. These workers gave

informed consent to participate, and were compensated per story,

in accordance with the requirements of MIT’s Committee on the

Use of Humans as Experimental Subjects.

Design and Materials
Forty-eight verbal stories involving mild to extreme physical or

emotional pain were constructed (‘‘high pain/suffering’’); a milder

form of each story was also created, in which the characters and

scene remained unchanged but the physical or emotional pain

were eliminated or lessened (‘‘low pain/suffering’’). This resulted

in 96 total stories. Stories varied in the depicted environment, the

number of people involved, and age and gender of the protagonist,

but were approximately matched for length (mean: 46.9 words

63.5 s.d.) and complexity (Flesch reading level: 86.366.2 s.d.).

(For sample stories, see Table 1; for full list of stimuli, see

Methods S1).

An additional 48 stories involving false beliefs were also

presented but were excluded from the analysis. In these stories,

the protagonist’s false beliefs always led to emotions (there were no

stories in which a character experienced physical pain based on

a false belief), and could therefore bias our analysis to find

differences between emotional and physical stories, which truly

reflected only the presence of false beliefs.

Half the participants in the study were told to ‘‘rate the pain/

suffering’’ experienced by the protagonist of each story, and half

the participants were told to ‘‘actively empathize’’ with the

protagonist of each story [25]. We have previously reported that

participants’ explicit task had little effect on neural responses to

these stimuli; we therefore average across both groups of

participants in the current analysis.

Behavioral ratings. The 96 short stories were presented one

at a time, using the online interface of mTurk. mTurk ‘‘workers’’

rated each story on three separate 9-point scales (anchored at

‘‘none at all’’ and ‘‘extreme’’):

Pain: ‘‘How much physical pain was the main character in?’’

Suffering: ‘‘How much emotional suffering did the main

character experience?’’

Vividness: ‘‘How vivid and ‘movie-like’ was this scenario to

you?’’

The 96 stories were each rated by 40 people for ‘‘pain’’ and

‘‘suffering’’, and by 20 people for ‘‘vividness’’. A worker’s

responses to an item were dropped if: 1. they gave any response

except ‘9’ (‘‘completely agree’’) for a ‘catch’ question (‘‘I read the

story and answered all the questions honestly’’), or 2. the response

times were unreasonably fast (unrealistic reading rates of .600

words per minute). These restrictions resulted in the exclusion of

approximately 15% of the responses. After excluding these data,

each story was rated across the dimensions of ‘‘pain’’ and

‘‘suffering’’ by 26–40 people (mean 34.664.0 s.d.), and across

the dimension of ‘‘vividness’’ by 12–20 people (1762.1).

fMRI imaging. Participants in the fMRI study each read 48

of the 96 stories. The sample of items was approximately balanced

across participants (to ensure every participant saw approximately

Neural Responses to Others’ Pain and Suffering
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12 stories with the highest levels of emotional suffering and

physical pain) but otherwise randomly chosen. The number of

participants who saw each specific story was 19.963.8 s.d. (range:

11–29).

Each run consisted of 4 blocks, separated by 12 s fixation

periods; within each block, 3 stories were presented for 16 s each,

separated by 2 s. In total, each run contained 12 stories, 2 from

each of the original six conditions, in counterbalanced order, and

lasted 4.6 minutes; the experiment consisted of 6 total runs. While

in the scanner, participants were asked to respond to each story

using a MRI-safe 4-button box.

Image Acquisition and Analysis. Participants were scanned

using a Siemens Magnetom Tim Trio 3T System (Siemens

Solutions, Erlangen, Germany) in the Athinoula A. Martinos

Imagining Center at the McGovern Institute for Brain Research at

MIT using 30 4-mm-thick near axial slices with whole brain

coverage (TR = 2 s, TE = 30 ms, flip angle = 90). The

experiment used a block design, and was modeled using a boxcar

regressor.

MRI data were analyzed using SPM8 (http://www.fil.ion.ucl.

ac.uk/spm/software/spm8/), and custom software. Each partic-

ipant’s data were motion corrected and normalized onto

a common brain space (Montreal Neurological Institute, MNI,

Template). Data were smoothed using a Gaussian filter (full width

half maximum = 5 mm).

For whole brain analyses, we first built a modified linear model

of the experimental design to analyze the BOLD response in each

voxel. The model included both covariates of interest (the stimulus

items) and nuisance covariates – run effects, an intercept term, and

global signal. We modeled each item as a box-car (matching the

onset and duration of each story) convolved with a standard

hemodynamic response function (HRF). Time-series data were

subjected to a high-pass filter (128 Hz).

Average beta responses were calculated across participants for

each story. Random Effects analysis was performed across the

item-wise beta-images [26], using the ratings on each question

(Pain, Suffering, Vividness) as user-defined regressors. These

analyses used corrected p thresholds of p,0.05 in a voxel-wise

analysis using Statistical non-Parametric Mapping (SnPM).

Because these predictors were correlated, it was interesting to

ask whether they nevertheless predict independent components of

the neural response; therefore analyses were also conducted

including all three regressors simultaneously in a single model,

with p thresholds at k.10, p,0.001, uncorrected.

For regions of interest analyses, a set of ROIs was generated

from a separate study in which participants directly viewed

another person experiencing a painful and unpleasant electrical

shock in real time. In this ‘‘Pain Localizer’’ study, participants in

the scanner directly observed a confederate’s hand as the

confederate received a painful and unpleasant electric shock

(versus a barely perceptible, non-painful shock) to the visible hand.

Based on activity in this task, we identified 8 functional regions of

interest (ROIs) involved in experiencing and/or perceiving pain or

suffering: bilateral secondary sensory cortex (l and r SII), bilateral

insula, anterior middle cingulate cortex (AMCC), bilateral

thalamus, and dorsal medial prefrontal cortex (DMPFC) (for

details, see Methods S1 and [25]). Then, the average response (i.e.

beta value) within each ROI for the current participants was

determined for each of the 96 stories.

Principal Component Analysis was applied to the 8696 matrix

of the average betas for the 96 stories in 8 ROIs. These

components were then correlated with the behavioral ratings of

Pain, Suffering and Vividness. Factor correlations were de-

termined for each behavioral rating individually, and also for the

residual of each rating after the other two ratings had been

accounted for.

To ensure that the ratings of Pain and Suffering explained

variance in the neural data beyond the variance that could be

explained by the original binary categorization of the stories, we

performed a two-step regression: first, we accounted for the

variance in the item-wise neural data within the regions of interest

using the categorical regressors of Pain (a ‘1’ for stories designed to

focus on Physical Pain, and a ‘0’ for all other stories) and Suffering

(a ‘1’ for stories designed to focus on Emotional Suffering, and a ‘0’

for all other stories). Second, we used the behavioral ratings of

Pain and Suffering for each story as continuous regressors and

determined if these regressors explained the residual variance.

Table 1. Sample stories.

Scenario Pain Suffering Vivid

Kevin took his son Zack to the doctor for a checkup. The doctor did a series of tests and came back to talk to
the father and son. The doctor told them that Zack has a rare form of cancer that they have no cure for. He gives Zack
6 months to live.

4.6 8.7 6.7

Bill was walking along a picket fence with his friend. Bill is in kindergarten and was trying to show his friend
how fast he could walk. Bill stumbled and fell onto a sharp picket. The picket pierces his leg and Bill was left hanging
on the fence.

8.2 6.3 5.8

Mark had wanted to ask Christy on a date for months. One day Mark walked up to her and asked her out.
Christy said that she was not interested and walked off. Mark did not even have time
to give her the flowers that he brought.

2.9 6.3 5.9

Liane was changing a lightbulb in her living room. Her roommate held a stool while Liane reached
up to unscrew the old bulb. The light had been on all night, though, and it was very hot. When she grabbed the bulb it
burned Liane’s hand.

6.9 4.6 6.2

Lauren slept on a new pillow last night that was firmer than she was used to. Lauren has had back problems
ever since she had a bicycle accident. Lauren woke up in the morning with no back pain and she did not have
to take any Advil.

3.3 3.5 4.2

Representatives from 96 total stories used in the neuroimaging study. Each story was rated for ‘‘how much physical pain’’ the protagonist felt, ‘‘how much emotional
suffering’’ the protagonist experienced, and ‘‘how vivid and ‘movie-like’’’ the story was.
doi:10.1371/journal.pone.0063085.t001
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Results

Behavioral results
Across stories, ratings of Pain, Suffering and Vividness were all

significantly positively correlated with each other (Pain-Suffering:

pearson’s r = 0.43; Pain-Vivid: r = 0.52; Suffering-Vivid: r = 0.76,

all p-values ,0.001). We next tested whether these behaviorally

inter-correlated features of the stories were represented in similar

or distinct brain regions.

Whole brain random effects analyses
We performed three whole-brain item-wise Random Effects

analyses, comparing neural responses across items to continuous

behavioral ratings of Pain, Suffering and Vividness. Ratings of the

character’s physical Pain (Figure 1A) correlated positively with

activity in the bilateral secondary sensory regions (SII), the anterior

middle cingulate cortex (AMCC), bilateral insula cortex (Ins),

middle frontal gyri (MFG) and a left lateral striate region, near the

location of the extrastriate body area (EBA) [28]. Ratings of the

character’s emotional Suffering (Figure 1B) were positively

correlated with activity in the posterior cingulate cortex (PCC),

precuneus (PC), and dorsal, middle and ventral regions of the

medial prefrontal cortex (MPFC) (Figure 1 and Table 2). At this

threshold (p,0.05, corrected) story Vividness was not significantly

correlated with activity in any brain region. At the more relaxed

threshold of p,0.001, uncorrected, ratings of Vividness correlated

with activity in small regions of the anterior thalamus/caudate

bilaterally, the right middle insula, and the posterior cingulate

cortex.

To test whether any of these brain regions showed ‘shared’

activity for Pain and Suffering, we conducted a conjunction

analysis (Figure 1C). Of the total number of voxels associated with

either ratings of Pain and Suffering, only 0.2% (41/17027 voxels)

were overlapping, all located in the posterior cingulate cortex (BA

23).

Because the ratings of Pain, Suffering, and Vividness were all

positively correlated, some observed overlap between these regions

may be explained by shared variance in the predictors. To

examine this, we whole brain item-wise random effects analyses for

each of the rating items separately, and a single whole brain item-

wise random effects analysis at the same relaxed threshold

(p,0.001, uncorrected) in which all three scales were included

as simultaneous regressors. Relative to regressing each variable

separately, the simultaneous model (Figure S1) showed a net

increase in supra-threshold voxels for Pain (12523 voxels separate,

15970 voxels simultaneous) and Suffering (4595 voxels separate,

8397 voxels simultaneous) with no change in the number of

clusters, but a net decrease in supra-threshold voxels for Vividness

(695 voxels separate, 187 voxels simultaneous).

Regions of Interest
We identified 8 ROIs based on responses to a Pain Localizer

task in an independent group of participants: left and right

secondary sensory regions (SII), left and right insula, left and right

Figure 1. Item-wise correlations of brain activity with ratings of physical pain and emotional suffering. Regression analyses identified
the brain regions where brain activity was most highly correlated with behavioral ratings of (A) ‘‘How much physical pain was the main character in?’’
(hot), and (B) ‘‘How much emotional suffering did the main character experience?’’ (cool). The brain regions where activity correlated with ratings of
physical pain (A) include the bilateral insula cortex (Ins), anterior middle cingulate cortex (AMCC), bilateral middle frontal gyrus (MFG), bilateral
secondary sensory regions (SII) and right extrastriate body area (EBA). The brain regions where activity correlated with ratings of emotional pain
(suffering) (B) included the left dorsal striatum/anterior thalamus (Thal), precuneus (PC), posterior cingulate cortex (PCC), and regions in the medial
prefrontal cortex (MPFC). Shown in (C) are both the regions where activity correlated with Pain (red), where activity correlated with Suffering (blue),
and the conjunction of the two (white). All analyses are shown at p,0.05, corrected.
doi:10.1371/journal.pone.0063085.g001
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anterior thalamus, anterior middle cingulate cortex (AMCC) and

dorsomedial prefrontal cortex (DMPFC). In each ROI, average

beta values were extracted for each story.

In a principal component analysis (PCA) of the responses of

these eight regions across items, the first principal component

explained 60% of the variance. The DMPFC, left thalamus and

right thalamus ROIs loaded positively on this component, while

the remaining 5 ROIs (left and right SII, left and right insula,

AMCC) loaded negatively (Table 3). Also, this first principle

component was strongly positively correlated with ratings of

Suffering (r = 0.35, p,0.0005), negatively correlated with ratings

of Pain (r =20.27, p,0.01), and uncorrelated with ratings of

Vividness (r = 0.17, p = 0.11), even though ratings of Pain,

Suffering, and Vividness were positively correlated across items.

We also conducted this analysis using only the residual variance

for each of these ratings that was unshared with the other two

ratings. Again, the residual variance in Suffering and Pain were

strongly correlated with the first principal component of ROI

responses (Suffering: r = 0.38, p,0.0005; Pain: r =20.44,

p,0.0001), while Vividness was not (r =20.01, p = 0.95).

Table 2. Coordinates of peak brain activity for regressions of Pain, Suffering and Vividness.

Pain

Cluster-level Cluster-Voxel combo Voxel-level

k w Pcombo x y z peak t Brain Area

3719 8.82 0.0006 254 4 6 7.49 Left Insula

240 0 6 6.30 Left Insula

244 50 16 6.15 Left Middle Frontal Gyrus

1595 8.82 0.0006 52 10 22 6.86 Right Insula

44 4 22 6.41 Right Insula

56 10 6 5.82 Right Insula

2007 8.82 0.0006 0 6 30 6.79 Anterior Middle Cingulate Cortex

2 14 30 6.38 Anterior Middle Cingulate Cortex

0 2 38 6.12 Anterior Middle Cingulate Cortex

2870 8.82 0.0006 262 222 28 6.76 Left Secondary Sensory

256 232 48 6.59 Left Secondary Sensory

262 230 30 6.58 Left Secondary Sensory

1196 7.57 0.0022 64 226 38 6.17 Right Secondary Sensory

62 230 50 5.63 Right Secondary Sensory

68 226 24 5.24 Right Secondary Sensory

249 6.68 0.0054 228 36 212 6.01 Left Orbitofrontal Gyrus

502 5.61 0.0158 48 50 12 5.54 Right Middle Frontal Gyrus

50 44 4 5.08 Right Middle Frontal Gyrus

42 56 24 4.76 Right Middle Frontal Gyrus

Suffering

3148 8.42 0.0008 28 50 22 6.09 MPFC

6 58 36 5.75 DMPFC

24 36 62 5.00 Posterior DMPFC

1088 6.08 0.0102 22 220 40 5.32 Posterior Cingulate Cortex

210 258 32 4.51 Left Precuneus

22 252 18 4.25 Precuneus

Vividness

MNI coordinates, t-value of the peak voxels in each cluster, and the brain regions that correspond to each peak for each of the contrasts used in the study. All analyses
thresholded at p,0.05 (corrected).
No supra-threshold voxels at p,0.05, corrected.
doi:10.1371/journal.pone.0063085.t002

Table 3. Principal component analysis (PCA) of brain
responses to stories in regions of interest (ROIs) defined in an
independent ‘pain empathy’ localizer.

Factor Loadings

L SII R SII L Ins R Ins AMCC LThal RThal DMPFC

20.14 20.16 20.15 20.13 20.10 0.14 0.19 0.92

Shown are the factor loadings in the first factor of a PCA that used the average
beta response to each of the 96 stories in each of the 8 ROIs. Together, this
factor accounted for 60% of the variance. SII = secondary sensory cortex, Ins =
insula, AMCC = anterior middle cingulate cortex, Thal = anterior thalamus,
DMPFC = dorsomedial prefrontal cortex.
doi:10.1371/journal.pone.0063085.t003
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To further explore the correlations between ratings of Pain,

Suffering and Vividness and responses in individual ROIs, we

conducted post-hoc pairwise correlation analyses. Due to the large

number of regressions performed, we used a significance threshold

that reflected a correction for multiple comparisons (p-value

,0.002). Of the brain regions that loaded negatively on the first

principal component (Figure 2A), ratings of Pain positively

correlated with brain activity in left insula (pearson’s r = 0.44,

p,0.002), right insula (r = 0.43) and AMCC (r = 0.47), and

showed a positive trend in lSII (r = 0.26, p,0.05) and rSII

(r = 0.25, p,0.05); none of these brain regions were positively

correlated with Suffering. Of the brain regions that loaded positively

on the first principal component (Figure 2B), on the other hand,

ratings of Suffering were significantly correlated with activity in the

left anterior thalamus (r = 0.33) and DMPFC (r = 0.38), and

showed a positive trend in the right anterior thalamus (r = 0.22,

p,0.05); none of these brain regions were positively correlated

with Pain, but the DMPFC showed a negative trend with ratings

of Pain (r =20.22, p,0.05).

Ratings of Vividness were positively correlated with activity in

the left anterior thalamus (r = 0.33, p,0.002), and trended

towards positive correlations with activity in the right insula

(r = 0.30, p,0.05), right anterior thalamus (r = 0.27, p,0.05), and

the AMCC (r = 0.22, p,0.05) (Table 4).

After accounting for variance explained by the original binary

categories of the stimuli (physical pain, emotional suffering), we

found that the continuous measures still explained significant

variance in the left and right SII (p-values ,0.01), the right insula

(p,0.01), the aMCC (p,0.001), the dmPFC (p,0.05), and

provided marginal additional predictive power for the left

thalamus and left insula (p-values ,0.10). The continuous

regressors failed to explain residual variance only in the right

thalamus (p = 0.4).

Figure 2. Ratings of Pain, Suffering and Vividness compared to brain activity in 8 ROIs. The average ratings of Physical Pain and
Emotional Suffering experienced by the protagonist in each story, and the overall Vividness of the scene were compared to brain activity elicited for
each story in 8 ROIs identified in a separate data set. Shown in (A) are the 5 ROIs that loaded negatively onto the first factor of the principal
component analysis, and in (B) the 3 ROIs that loaded positively onto that first factor. Pain, Suffering and Vividness were rated on a scale from 1
(none) to 9 (extreme), and brain activity was measured as the average beta value within each ROI. ** p,0.002 (significant, correcting for multiple
comparisons). SII = secondary sensory cortex, Ins = insula, AMCC = anterior middle cingulate cortex, Thal = anterior thalamus, DMPFC =
dorsomedial prefrontal cortex.
doi:10.1371/journal.pone.0063085.g002
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Discussion

In our stimuli, as in many real life experiences, the physical

pain, emotional suffering, and vividness of the experience were all

positively correlated. Positive correlations between distinct features

of complex social stories raise a challenge for neuroimaging

experiments. In the current experiment, we addressed that

challenge using parametric item analysis. This analysis allowed

us to go beyond the limits of both standard subtraction techniques,

which require that stimuli be assigned to a small number of

discrete conditions, and of regions of interest analyses, which focus

on constrained brain regions, to look at the association and

dissociation between continuous cognitive processes.

Using item analysis, we found that different brain regions are

correlated with the amount of physical pain versus emotional

suffering depicted in verbal stories. Across 96 stories, the amount

of physical pain experienced by the protagonist predicted neural

activity in bilateral secondary sensory regions, bilateral insulae,

anterior middle cingulate cortex, bilateral middle frontal gyri and

a left lateral extrastriate region, possibly the left EBA [29]. By

contrast, the amount of emotional suffering depicted in the same

stories was correlated with activity in the precuneus, posterior

cingulate, and medial prefrontal cortex. Converging results

appeared in whole brain and regions of interest analyses, and in

spite of the fact that ratings of Pain, Suffering and Vividness were

positively correlated in the stimuli. These results therefore strongly

suggest that people have distinct neural responses to other people

experiencing physical pain versus emotional suffering.

The parametric item analysis has multiple methodological

advantages over more standard subject-wise analyses used in our

prior papers [19,25]: (1) the behavioral ratings used to predict

neural response to each item were assigned by naive participants

(rather than by the experimenter), (2) multiple correlated

dimensions of the stimuli could be studied simultaneously, (3) we

explicitly tested whether the observed relationships can be

generalized beyond the current sample of stimuli, by treating

items as a random effect [24,26,27] (4) the statistical power of the

analyses is related to the number of items (n = 96), which is greater

than the number of participants (n = 41), and (5) variance within

a ‘condition’ could be used as statistical leverage, rather than

ignored as noise. Item analysis can thus provide strong evidence

for the association between a brain region’s activity and intrinsic

dimensions of high-level complex stimuli, like vignettes about

other people (rather than participants’ specific experiences of the

stimuli).

Consistent with our previous analyses of these data [25], the

current results show that simply reading about another person’s

physical pain can produce activity in the ‘Shared Pain network’. In

prior research, these regions (especially bilateral insula and middle

cingulate cortex) were recruited when participants viewed images

of body parts threatened by needles and knives [4,7,30,31],

watched videos of people’s faces while they undergo painful

physical therapy [5,11], were cued that a loved one was receiving

an electric shock [6], or were reminded of a documentary about

another’s pain [3,32]. In the current experiment, these same

regions’ responses were robustly correlated with continuous ratings

of physical pain experienced by a (fictional) stranger in a verbal

story. It is particularly interesting that we observed significant

responses in right and left secondary sensory cortex to verbal

stories (although note that the responses in the sensory regions

were low overall); just imagining sensory experiences appears to be

sufficient to modulate sensory cortices [33]. These results may

have practical implications, since written stories can be transmitted

so much further, and faster, than direct dyadic social interactions.

One striking feature of these results is that they suggest

a functional divide between two subsets of the ‘Shared Pain

network’. We identified 8 regions of interest based on a standard

Pain Localizer task, in which participants experienced, and

directly witnessed another person experiencing, painful and

unpleasant electric shocks to the hand. This localizer is most

likely to identify brain regions associated with the perception of

acute, temporary, concrete, discrete, physical pain. For this reason

it is particularly interesting that all of these regions are modulated

by verbal stories describing painful experiences that are longer

lasting, more distant in space and time and presented more

abstractly – and for some regions, experiences that are more

emotionally than physically painful.

Interestingly, rather than being explained by 2 separate

components of equal weight, the data in the ROIs were best

described by a single component of the regions’ responses across

items, which accounted for 60% of the variance. This component

had a positive loading of left thalamus, right thalamus and DMPF,

and a negative loading of bilateral insula, bilateral sensory regions,

and the AMCC. This component in turn correlated positively with

ratings of emotional Suffering and negatively with ratings of

physical Pain, but was not correlated with ratings of story

Vividness. While the overall PCA suggests that activity in the

ROIs is best explained by a single, anti-correlated component,

follow-up pairwise correlations within each ROI indicated that

most regions were correlated with either the physical Pain or the

emotional Suffering ratings. Analysis within the ROIs showed that

only the middle cingulate region showed any hint of a positive

correlation with both dimensions, and only the DMPFC showed

a significant positive correlation with one (Suffering) and a negative

correlation with the other (Pain).

The distinction between the two sets of brain regions responding

to others physical pain versus emotional suffering may reflect

distinct evolutionary histories. It is possible that responses to

others’ physical pain evolved earlier, followed by a second system

that evolved in evolutionarily more recent regions (i.e. prefrontal

cortex) as human social cognition developed. If, as suggested by

the PCA, these two neural responses are anti-correlated, rather

than simply uncorrelated, this could also be adaptive. It may be

prudent to prioritize attention to another’s physical pain over their

emotional suffering until an immediate physical threat is

Table 4. Item-wise correlations between brain activity and
behavioral ratings within specific regions of interest.

Suffering Pain Vivid

lSII 20.19 0.26* 0.02

rSII 20.09 0.25* 0.00

lIns 0.01 0.44** 0.17

rIns 0.19 0.43** 0.30*

aMCC 0.21* 0.47** 0.22*

lThal 0.33** 0.17 0.33**

rThal 0.21* 0.07 0.27*

dmPFC 0.38** 20.22* 0.19

Behavioral ratings for each story for Pain, Suffering and Vividness were
correlated with average brain activity in 8 regions of interest defined in an
independent data set. SII = secondary sensory cortex, Ins = insula, AMCC =
anterior middle cingulate cortex, Thal = anterior thalamus, DMPFC =
dorsomedial prefrontal cortex.
*p,0.05.
**p,0.002.
doi:10.1371/journal.pone.0063085.t004
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addressed: coming upon the scene of a child hanging by their leg

on a picket fence, or finding a relative gored by a wild animal, first

attending to liberating them from the physically dangerous

situation, and then addressing their emotional trauma may be

more likely to save their lives. Further studies, potentially

employing temporally sensitive methods like EEG or MEG, may

help to resolve this issue of uncorrelated versus anti-correlated

activity in the brain regions responsive to others’ physical Pain and

emotional Suffering.

How do the current results fit with the previous literature? In

apparent contrast to the dissociation observed here, multiple prior

studies have reported simultaneous activity in regions that we

found to be uncorrelated with each other in the current analyses,

such as AI, AMCC and DMPFC [1,3,11,34]. We suggest that in

those stimuli, as in real life, physical pain almost always includes

some aspect of emotional suffering, so both processes may have

been initiated in these previous studies. In our story stimuli, ratings

of pain and suffering were strongly positively correlated. In the

story empathy experiment we were able to distinguish these

regions, by using a continuous parametric item analysis to separate

correlations with emotional suffering versus physical pain in the

same stimuli.

Our results converge with considerable prior evidence that

regions in the MPFC are critical for affective perspective-taking

[35–37]. DMPFC activity is observed when stimuli elicit a strong

sense of a target’s emotions – including people’s faces [1,5,11] or

the context of their suffering [5]. By contrast, just seeing images of

a body part threatened by a needle, for example, does not lead to

activity in MPFC [4,7,30,31]. Similarly, a recent meta-analysis

found that regions in the MPFC were recruited when a physically

present live person was subjected to a painful experience (as it was

in our Pain Localizer experiment), but not when similar injuries

were depicted in photographs (note that the MPFC region in the

current analysis is closer to the region labeled ‘‘VMPFC’’ than

‘‘DMPFC’’, in the meta-analysis [32]).

Identifying the MPFC as a region that recognizes emotional

suffering, but not physical pain, provides an interesting in-

terpretation of a prior result on inter-group empathic failures.

Black and white Americans, looking at images of other black and

white Americans after a natural disaster (Hurricane Katrina),

showed activity in both ‘pain’ (e.g. insula) and ‘suffering’ (e.g.

MPFC) brain regions, but MPFC activity was reduced for

outgroup targets [22]. In another study, neural responses in

Arabs, Israelis and South Americans to stories involving ingroup,

conflict outgroup and ‘distant’ outgroup protagonists experiencing

either pain or suffering was examined. Activity in the DMPFC and

VMPFC was reduced when reading about a distant outgroup

member’s emotional suffering [19]. These studies suggest that

neural responses to observed emotional suffering may be more

affected by inter-group differences than responses to physical pain.

The one area where brain activity correlated with both Pain and

Suffering measures was a small region in the posterior cingulate

cortex (PCC; Brodmann’s Area 23). Cytoarchitectural data and

functional connectivity suggest that the cingulate is a highly

compartmentalized structure [38,39]: while the AMCC (BA 24)

has numerous thalamic inputs and is strongly associated with first

and second-hand pain, the PCC (BA 23) immediately caudal to

the AMCC shares reciprocal connections with high-level visual

cortex [38], and this particular region of the PCC has been shown

to activate when making moral judgments, particularly if those

judgments are difficult [40,41]. In the present study, PCC activity

while making judgments about others’ pain/suffering was sensitive

to the extremity of another’s suffering. Together, this suggests that

the PCC is sensitive to rating others’ emotional experiences per se,

or to enhanced imagination of these emotional experiences as the

severity increases. A more detailed analysis would be necessary to

determine if the slight overlap of Pain and Suffering in this region

represents a meaningful recruitment across conditions or a re-

cruitment of different neural populations within the same region.

Conclusion

In sum, using both whole brain and region of interest item-

analyses, we found that the brain regions associated with the

‘Shared Pain network’ (secondary sensory, anterior middle

cingulate and bilateral insulae) were recruited more for stories

involving physical pain, while a distinct set of brain regions

(especially in medial prefrontal cortex) were recruited more for

stories involving emotional suffering. These brain regions thus

seem to be involved, respectively, in representing another person’s

physical pain and emotional suffering. These neural systems may

therefore provide a foundation for two distinct aspects of human

empathy. Note, though, that the neural response measured here

represents just the first steps in a full-blown empathic response

[42]. While a neural representation of another’s pain and suffering

may precipitate empathic concern and helping behavior, this pro-

social response is by no means inevitable. Understanding if

someone is suffering is presumably just as important to an

interrogator as it is to a social worker: representing another’s pain

and suffering could also be the first step to exploitation or even

feeling delight. Determining which part of the activity observed

here, or which additional downstream responses, represent true

empathic concern will be a focus of future research.
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