551 research outputs found
Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability
The pace of Arctic warming is about double that at lower latitudes – a robust phenomenon known as Arctic amplification (AA)1. Many diverse climate processes and feedbacks cause AA2-7, including positive feedbacks associated with diminished sea ice6,7. However, the precise contribution of sea-ice loss to AA remains uncertain7,8. Through analyses of both observations and model simulations, we show that the contribution of sea-ice loss to wintertime AA appears dependent on the phase of the Pacific Decadal Oscillation (PDO). Our results suggest that for the same pattern and amount of sea-ice loss, consequent Arctic warming is larger during the negative PDO phase, relative to the positive phase, leading to larger reductions in the poleward gradient of tropospheric thickness and to more pronounced reductions in the upper-level westerlies. Given the oscillatory nature of the PDO, this relationship has the potential to increase skill in decadal-scale predictability of Arctic and sub-Arctic climate. Our results indicate that Arctic warming in response to the ongoing long-term sea-ice decline9,10 is greater (reduced) during periods of negative (positive) PDO phase. We speculate that the observed recent shift to the positive PDO phase, if maintained and all other factors being equal, could act to temporarily reduce the pace of wintertime Arctic warming in the near future.J.A.S. was funded by a UK Natural Environment Research Council (NERC) grants NE/J019585/1 and NE/M006123/1. J.A.F. was supported by an NSF/ARCSS grant (1304097) and NASA grant (NNX14AH896). The model simulations were performed on the ARCHER UK National Supercomputing Service. We thank the NOAA ESRL and Met Office Hadley Centre for provision of observational and reanalysis data sets. We also thank D. Ackerley for helping to diagnose the cause of model crashes, C. Deser for commenting on the manuscript prior to submission, and two anonymous reviewers for constructive criticism
Amplified mid-latitude planetary waves favour particular regional weather extremes
Copyright © 2014 Nature Publishing GroupThere has been an ostensibly large number of extreme weather events in the Northern Hemisphere mid-latitudes during the past decade [1]. An open question that is critically important for scientists and policy makers is whether any such increase in weather extremes is natural or anthropogenic in origin [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. One mechanism proposed to explain the increased frequency of extreme weather events is the amplification of mid-latitude atmospheric planetary waves [14, 15, 16, 17]. Disproportionately large warming in the northern polar regions compared with mid-latitudes—and associated weakening of the north–south temperature gradient—may favour larger amplitude planetary waves [14, 15, 16, 17], although observational evidence for this remains inconclusive [18, 19, 20, 21]. A better understanding of the role of planetary waves in causing mid-latitude weather extremes is essential for assessing the potential environmental and socio-economic impacts of future planetary wave changes. Here we show that months of extreme weather over mid-latitudes are commonly accompanied by significantly amplified quasi-stationary mid-tropospheric planetary waves. Conversely, months of near-average weather over mid-latitudes are often accompanied by significantly attenuated waves. Depending on geographical region, certain types of extreme weather (for example, hot, cold, wet, dry) are more strongly related to wave amplitude changes than others. The findings suggest that amplification of quasi-stationary waves preferentially increases the probabilities of heat waves in western North America and central Asia, cold outbreaks in eastern North America, droughts in central North America, Europe and central Asia, and wet spells in western Asia.Natural Environment Research Council (NERC
Recommended from our members
Seasonal to interannual Arctic sea-ice predictability in current GCMs
We establish the first inter-model comparison of seasonal to interannual predictability of present-day Arctic climate by performing coordinated sets of idealized ensemble predictions with four state-of-the-art global climate models. For Arctic sea-ice extent and volume, there is potential predictive skill for lead times of up to three years, and potential prediction errors have similar growth rates and magnitudes across the models. Spatial patterns of potential prediction errors differ substantially between the models, but some features are robust. Sea-ice concentration errors are largest in the marginal ice zone, and in winter they are almost zero away from the ice edge. Sea-ice thickness errors are amplified along the coasts of the Arctic Ocean, an effect that is dominated by sea-ice advection. These results give an upper bound on the ability of current global climate models to predict important aspects of Arctic climate
Specialization of tendon mechanical properties results from interfascicular differences
Tendons transfer force from muscle to bone. Specific tendons, including the equine superficial digital flexor tendon (SDFT), also store and return energy. For efficient function, energy-storing tendons need to be more extensible than positional tendons such as the common digital extensor tendon (CDET), and when tested in vitro have a lower modulus and failure stress, but a higher failure strain. It is not known how differences in matrix organization contribute to distinct mechanical properties in functionally different tendons. We investigated the properties of whole tendons, tendon fascicles and the fascicular interface in the high-strain energy-storing SDFT and low-strain positional CDET. Fascicles failed at lower stresses and strains than tendons. The SDFT was more extensible than the CDET, but SDFT fascicles failed at lower strains than CDET fascicles, resulting in large differences between tendon and fascicle failure strain in the SDFT. At physiological loads, the stiffness at the fascicular interface was lower in the SDFT samples, enabling a greater fascicle sliding that could account for differences in tendon and fascicle failure strain. Sliding between fascicles prior to fascicle extension in the SDFT may allow the large extensions required in energy-storing tendons while protecting fascicles from damage
Arctic cut-off high drives the poleward shift of a new Greenland melting record
Large-scale atmospheric circulation controls the mass and energy balance of the Greenland ice sheet through its impact on radiative budget, runoff and accumulation. Here, using reanalysis data and the outputs of a regional climate model, we show that the persistence of an exceptional atmospheric ridge, centred over the Arctic Ocean, was responsible for a poleward shift of runoff, albedo and surface temperature records over the Greenland during the summer of 2015. New records of monthly mean zonal winds at 500 hPa and of the maximum latitude of ridge peaks of the 5,700±50 m isohypse over the Arctic were associated with the formation and persistency of a cutoff high. The unprecedented (1948–2015) and sustained atmospheric conditions promoted enhanced runoff, increased the surface temperatures and decreased the albedo in northern Greenland, while inhibiting
melting in the south, where new melting records were set over the past decade
Arctic change and possible influence on mid-latitude climate and weather: a US CLIVAR White Paper
The Arctic has warmed more than twice as fast as the global average since the mid 20th century,
a phenomenon known as Arctic amplification (AA). These profound changes to the Arctic system
have coincided with a period of ostensibly more frequent events of extreme weather across the
Northern Hemisphere (NH) mid-latitudes, including extreme heat and rainfall events and recent
severe winters. Though winter temperatures have generally warmed since 1960 over mid-to-high
latitudes, the acceleration in the rate of warming at high-latitudes, relative to the rest of the NH,
started approximately in 1990. Trends since 1990 show cooling over the NH continents, especially
in Northern Eurasia.
The possible link between Arctic change and mid-latitude climate and weather has spurred a rush
of new observational and modeling studies. A number of workshops held during 2013-2014 have
helped frame the problem and have called for continuing and enhancing efforts for improving
our understanding of Arctic-mid-latitude linkages and its attribution to the occurrence of extreme
climate and weather events. Although these workshops have outlined some of the major challenges
and provided broad recommendations, further efforts are needed to synthesize the diversified
research results to identify where community consensus and gaps exist.
Building upon findings and recommendations of the previous workshops, the US CLIVAR Working
Group on Arctic Change and Possible Influence on Mid-latitude Climate and Weather convened an
international workshop at Georgetown University in Washington, DC, on February 1-3, 2017. Experts
in the fields of atmosphere, ocean, and cryosphere sciences assembled to assess the rapidly evolving
state of understanding, identify consensus on knowledge and gaps in research, and develop specific
actions to accelerate progress within the research community. With more than 100 participants,
the workshop was the largest and most comprehensive gathering of climate scientists to address
the topic to date. In this white paper, we synthesize and discuss outcomes from this workshop and
activities involving many of the working group members
Ultrasound Measurement of Local Deformation in the Human Free Achilles Tendon Produced by Dynamic Muscle-Induced Loading: A Systematic Review.
Achilles tendinopathy is the most prevalent lower limb tendinopathy, yet it remains poorly understood, with mismatches between observed structure and reported function. Recent studies have hypothesised that Achilles tendon (AT) healthy function is associated with variable deformation across the tendon width during use, focusing on quantifying sub-tendon deformation. Here, the aim of this work was to synthesise recent advances exploring human free AT tissue-level deformation during use. Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, PubMed, Embase, Scopus and Web of Science were systematically searched. Study quality and risk of bias were assessed. Thirteen articles were retained, yielding data on free AT deformation patterns. Seven were categorised as high-quality and six as medium-quality studies. Evidence consistently reports that healthy and young tendons deform non-uniformly, with the deeper layer displacing 18%-80% more than the superficial layer. Non-uniformity decreased by 12%-85% with increasing age and by 42%-91% in the presence of injury. There is limited evidence of large effect that AT deformation patterns during dynamic loading are non-uniform and may act as a biomarker of tendon health, risk of injury and rehabilitation impact. Better considered participant recruitment and improved measurement procedures would particularly improve study quality, to explore links between tendon structure, function, aging and disease in distinct populations
Guidelines for ex vivo mechanical testing of tendon.
Tendons are critical for the biomechanical function of joints. Tendons connect muscles to bones and allow for the transmission of muscle forces to facilitate joint motion. Therefore, characterizing the tensile mechanical properties of tendons is important for the assessment of functional tendon health and efficacy of treatments for acute and chronic injuries. In this guidelines paper, we review methodological considerations, testing protocols, and key outcome measures for mechanical testing of tendons. The goal of the paper is to present a simple set of guidelines to the non-expert seeking to perform tendon mechanical tests. The suggested approaches provide rigorous and consistent methodologies for standardized biomechanical characterization of tendon and reporting requirements across laboratories. This article is protected by copyright. All rights reserved
Recommended from our members
Respective impacts of Arctic sea ice decline and increasing greenhouse gases concentration on Sahel precipitation
The impact of climate change on Sahel precipitation is uncertain and has to be widely documented. Recently, it has been shown that Arctic sea ice loss leverages the global warming effects worldwide, suggesting a potential impact of Arctic sea ice decline on tropical regions. However, defining the specific roles of increasing greenhouse gases (GHG) concentration and declining Arctic sea ice extent on Sahel climate is not straightforward since the former impacts the latter. We avoid this dependency by analysing idealized experiments performed with the CNRM-CM5 coupled model. Results show that the increase in GHG concentration explains most of the Sahel precipitation change. We found that the impact due to Arctic sea ice loss depends on the level of atmospheric GHG concentration. When the GHG concentration is relatively low (values representative of 1980s), then the impact is moderate over the Sahel. However, when the concentration in GHG is levelled up, then Arctic sea ice loss leads to increased Sahel precipitation. In this particular case the ocean-land meridional gradient of temperature strengthens, allowing a more intense monsoon circulation. We linked the non-linearity of Arctic sea ice decline impact with differences in temperature and sea level pressure changes over the North Atlantic Ocean. We argue that the impact of the Arctic sea ice loss will become more relevant with time, in the context of climate change
- …
