166 research outputs found
Symmetric Skyrmions
We present candidates for the global minimum energy solitons of charge one to
nine in the Skyrme model, generated using sophisticated numerical algorithms.
Assuming the Skyrme model accurately represents the low energy limit of QCD,
these configurations correspond to the classical nuclear ground states of the
light elements. The solitons found are particularly symmetric, for example, the
charge seven skyrmion has icosahedral symmetry, and the shapes are shown to fit
a remarkable sequence defined by a geometric energy minimization (GEM) rule. We
also calculate the energies and sizes to within at least a few percent
accuracy. These calculations provide the basis for a future investigation of
the low energy vibrational modes of skyrmions and hence the possibility of
testing the Skyrme model against experiment.Comment: latex, 9 pages, 1 figure (fig1.gif
Allogeneic hematopoietic cell transplantation for multiple myeloma in Europe: trends and outcomes over 25 years. A study by the EBMT Chronic Malignancies Working Party
We describe the use and outcomes of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for multiple myeloma (MM) in Europe between January 1990 and December 2012. We identified 7333 patients, median age at allo-HSCT was 51 years (range: 18-78), of whom 4539 (62%) were males. We distinguished three groups: (1) allo-HSCT upfront (n=1924), (2) tandem auto-allo-HSCT (n=2004) and (3) allo-HSCT as a second line treatment and beyond (n=3405). Overall, there is a steady increase in numbers of allo-HSCT over the years. Upfront allo-HSCT use increased up to year 2000, followed by a decrease thereafter and represented 12% of allo-HSCTs performed in 2012. Tandem auto-allo-HSCT peaked around year 2004 and contributed to 19% of allo-HSCTs in 2012. Allo-HSCT as salvage after one or two or three autografts was steadily increasing over the last years and represented 69% of allo-HSCTs in 2012. Remarkable heterogeneity in using allo-HSCT was observed among the different European countries. The 5-year survival probabilities from time of allo-HSCT for the three groups after year 2004 were 42%, 54% and 32%, respectively. These results show that the use of allo-HSCT is increasing in Europe, especially as second line treatment and beyond. There is an unmet need for well-designed prospective studies investigating allo-HSCT as salvage therapy for MM
Daratumumab-Based Treatment for Immunoglobulin Light-Chain Amyloidosis
Background Systemic immunoglobulin light-chain (AL) amyloidosis is characterized by deposition of amyloid fibrils of light chains produced by clonal CD38+ plasma cells. Daratumumab, a human CD38-targeting antibody, may improve outcomes for this disease. Methods We randomly assigned patients with newly diagnosed AL amyloidosis to receive six cycles of bortezomib, cyclophosphamide, and dexamethasone either alone (control group) or with subcutaneous daratumumab followed by single-agent daratumumab every 4 weeks for up to 24 cycles (daratumumab group). The primary end point was a hematologic complete response. Results A total of 388 patients underwent randomization. The median follow-up was 11.4 months. The percentage of patients who had a hematologic complete response was significantly higher in the daratumumab group than in the control group (53.3% vs. 18.1%) (relative risk ratio, 2.9; 95% confidence interval [CI], 2.1 to 4.1; P Daratumumab in Light-Chain Amyloidosis In a randomized trial of bortezomib, cyclophosphamide, and dexamethasone as compared with the same therapy plus daratumumab, patients with light-chain amyloidosis who received daratumumab had a higher frequency of hematologic complete response than those who did not (53.3% vs. 18.1%). Deaths were most commonly due to cardiac failure
The Antibody Targeting the E314 Peptide of Human Kv1.3 Pore Region Serves as a Novel, Potent and Specific Channel Blocker
Selective blockade of Kv1.3 channels in effector memory T (TEM) cells was validated to ameliorate autoimmune or autoimmune-associated diseases. We generated the antibody directed against one peptide of human Kv1.3 (hKv1.3) extracellular loop as a novel and possible Kv1.3 blocker. One peptide of hKv1.3 extracellular loop E3 containing 14 amino acids (E314) was chosen as an antigenic determinant to generate the E314 antibody. The E314 antibody specifically recognized 63.8KD protein stably expressed in hKv1.3-HEK 293 cell lines, whereas it did not recognize or cross-react to human Kv1.1(hKv1.1), Kv1.2(hKv1.2), Kv1.4(hKv1.4), Kv1.5(hKv1.5), KCa3.1(hKCa3.1), HERG, hKCNQ1/hKCNE1, Nav1.5 and Cav1.2 proteins stably expressed in HEK 293 cell lines or in human atrial or ventricular myocytes by Western blotting analysis and immunostaining detection. By the technique of whole-cell patch clamp, the E314 antibody was shown to have a directly inhibitory effect on hKv1.3 currents expressed in HEK 293 or Jurkat T cells and the inhibition showed a concentration-dependence. However, it exerted no significant difference on hKv1.1, hKv1.2, hKv1.4, hKv1.5, hKCa3.1, HERG, hKCNQ1/hKCNE1, L-type Ca2+ or voltage-gated Na+ currents. The present study demonstrates that the antibody targeting the E314 peptide of hKv1.3 pore region could be a novel, potent and specific hKv1.3 blocker without affecting a variety of closely related Kv1 channels, KCa3.1 channels and functional cardiac ion channels underlying central nervous systerm (CNS) disorders or drug-acquired arrhythmias, which is required as a safe clinic-promising channel blocker
Radiation chemistry of solid-state carbohydrates using EMR
We review our research of the past decade towards identification of radiation-induced radicals in solid state sugars and sugar phosphates. Detailed models of the radical structures are obtained by combining EPR and ENDOR experiments with DFT calculations of g and proton HF tensors, with agreement in their anisotropy serving as most important criterion. Symmetry-related and Schonland ambiguities, which may hamper such identification, are reviewed. Thermally induced transformations of initial radiation damage into more stable radicals can also be monitored in the EPR (and ENDOR) experiments and in principle provide information on stable radical formation mechanisms. Thermal annealing experi-ments reveal, however, that radical recombination and/or diamagnetic radiation damage is also quite important. Analysis strategies are illustrated with research on sucrose. Results on dipotassium glucose-1-phosphate and trehalose dihydrate, fructose and sorbose are also briefly discussed. Our study demonstrates that radiation damage is strongly regio-selective and that certain general principles govern the stable radical formation
Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity
Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kVm-1 to 100 kVm-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)-MicroARES (Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ measurements
- …