903 research outputs found

    New constraints on dust emission and UV attenuation of z=6.5-7.5 galaxies from millimeter observations

    Get PDF
    We have targeted two recently discovered Lyman break galaxies (LBGs) to search for dust continuum and [CII] 158 micron line emission. The strongly lensed z~6.8 LBG A1703-zD1 behind the galaxy cluster Abell 1703, and the spectroscopically confirmed z=7.508 LBG z8-GND-5296 in the GOODS-N field have been observed with the Plateau de Bure interferometer (PdBI) at 1.2mm. These observations have been combined with those of three z>6.5 Lya emitters (named HCM6A, Himiko, and IOK-1), for which deep measurements were recently obtained with the PdBI and ALMA. [CII] is undetected in both galaxies, providing a deep upper limit for Abell1703-zD1, comparable to recent ALMA non-detections. Dust continuum emission from Abell1703-zD1 and z8-GND-5296 is not detected with an rms of 0.12 and 0.16 mJy/beam. From these non-detections we derive upper limits on their IR luminosity and star formation rate, dust mass, and UV attenuation. Thanks to strong gravitational lensing the limit for Abell1703-zD1 is probing the sub-LIRG regime (LIR<8.1×1010L_{IR} <8.1 \times 10^{10} Lsun) and very low dust masses (Md<1.6×107M_d<1.6 \times 10^7 Msun). We find that all five galaxies are compatible with the Calzetti IRX-β\beta relation, their UV attenuation is compatible with several indirect estimates from other methods (the UV slope, extrapolation of the attenuation measured from the IR/UV ratio at lower redshift, and SED fits), and the dust-to-stellar mass ratio is not incompatible with that of galaxies from z=0 to 3. For their stellar mass the high-z galaxies studied here have an attenuation below the one expected from the mean relation of low redshift (z<1.5) galaxies. More and deeper (sub)-mm data are clearly needed to directly determine the UV attenuation and dust content of the dominant population of high-z star-forming galaxies and to establish more firmly their dependence on stellar mass, redshift, and other properties.Comment: 10 pages, 7 figures. Minor revisions. Accepted for publication in A&

    Near-Infrared Microlensing of Stars by the Super-Massive Black Hole in the Galactic Center

    Full text link
    We investigate microlensing amplification of faint stars in the dense stellar cluster in the Galactic Center (GC) by the super-massive black hole (BH). Such events would appear very close to the position of the radio source SgrA*, which is thought to coincide with the BH, and could be observed during the monitoring of stellar motions in the GC. We use the observed K-band (2.2 um) luminosity function (KLF) in the GC and in Baade's Window, as well as stellar population synthesis computations, to construct KLF models for the inner 300 pc of the Galaxy. These, and the observed dynamical properties of this region, are used to compute the rates of microlensing events, which amplify stars above specified detection thresholds. We present computations of the lensing rates and amplifications as functions of the event durations (weeks to years), for a range of detection thresholds. We find that short events dominate the total rate and that long events tend to have large amplifications. For the current detection limit of K=17 mag, the total microlensing rate is 0.003 1/yr, and the rate of events with durations >1 yr is 0.001 1/yr. Recent GC proper motion studies have revealed the possible presence of one or two variable K-band sources very close to SgrA* (Genzel et al 97; Ghez et al 98). These sources may have attained peak brightnesses of K~15 mag, about 1.5-2 mag above the observational detection limits, and appear to have varied on a timescale of ~1 yr. This behavior is consistent with long-duration microlensing of faint stars by the BH. However, we estimate that the probability that such an event could have been detected during the course of the recent proper motion studies is \~0.5%. A ten-fold improvement in the detection limit and 10 yr of monthly monitoring would increase the total detection probability to ~20%. (Abridged)Comment: 29 p. with 5 figs. To appear in ApJ. Changed to reflect published version. Short discussions of solar metallicity luminosity function and star-star microlensing adde

    The Spitzer View of Low-Metallicity Star Formation: II. Mrk 996, a Blue Compact Dwarf Galaxy with an Extremely Dense Nucleus

    Full text link
    (abridged) We present new Spitzer, UKIRT and MMT observations of the blue compact dwarf galaxy (BCD) Mrk 996, with an oxygen abundance of 12+log(O/H)=8.0. This galaxy has the peculiarity of possessing an extraordinarily dense nuclear star-forming region, with a central density of ~10^6 cm^{-3}. The nuclear region of Mrk 996 is characterized by several unusual properties: a very red color J-K = 1.8, broad and narrow emission-line components, and ionizing radiation as hard as 54.9 eV, as implied by the presence of the OIV 25.89 micron line. The nucleus is located within an exponential disk with colors consistent with a single stellar population of age >1 Gyr. The infrared morphology of Mrk 996 changes with wavelength. The IRS spectrum shows strong narrow Polycyclic Aromatic Hydrocarbon (PAH) emission, with narrow line widths and equivalent widths that are high for the metallicity of Mrk 996. Gaseous nebular fine-structure lines are also seen. A CLOUDY model requires that they originate in two distinct HII regions: a very dense HII region of radius ~580 pc with densities declining from ~10^6 at the center to a few hundreds cm^{-3} at the outer radius, where most of the optical lines arise; and a HII region with a density of ~300 cm^{-3} that is hidden in the optical but seen in the MIR. We suggest that the infrared lines arise mainly in the optically obscured HII region while they are strongly suppressed by collisional deexcitation in the optically visible one. The hard ionizing radiation needed to account for the OIV 25.89 micron line is most likely due to fast radiative shocks propagating in an interstellar medium. A hidden population of Wolf-Rayet stars of type WNE-w or a hidden AGN as sources of hard ionizing radiation are less likely possibilities.Comment: 48 pages, 13 figures, accepted for publication in the Astrophysical Journa

    Intense CIII] 1907,1909 emission from a strong Lyman continuum emitting galaxy

    Full text link
    We have obtained the first complete ultraviolet (UV) spectrum of a strong Lyman continuum(LyC) emitter at low redshift -- the compact, low-metallicity, star-forming galaxy J1154+2443 -- with a Lyman continuum escape fraction of 46% discovered recently. The Space Telescope Imaging Spectrograph spectrum shows strong Lya and CIII] 1909 emission, as well as OIII] 1666. Our observations show that strong LyC emitters can have UV emission lines with a high equivalent width (e.g. EW(CIII])=11.7±2.9A˚=11.7 \pm 2.9 \AA rest-frame), although their equivalent widths should be reduced due to the loss of ionizing photons. The intrinsic ionizing photon production efficiency of J1154+2443 is high, log(ξion0)=25.56\log(\xi_{\rm ion}^0)=25.56 erg1^{-1} Hz, comparable to that of other recently discovered z0.30.4z \sim 0.3-0.4 LyC emitters. Combining our measurements and earlier determinations from the literature, we find a trend of increasing ξion0\xi_{\rm ion}^0 with increasing CIII] 1909 equivalent width, which can be understood by a combination of decreasing stellar population age and metallicity. Simple ionization and density-bounded photoionization models can explain the main observational features including the UV spectrum of J1154+2443.Comment: 5 pages, 4 figures. Accepted for publication in A&A Letter

    No temperature fluctuations in the giant HII region H 1013

    Get PDF
    While collisionally excited lines in HII regions allow one to easily probe the chemical composition of the interstellar medium in galaxies, the possible presence of important temperature fluctuations casts some doubt on the derived abundances. To provide new insights into this question, we have carried out a detailed study of a giant HII region, H 1013, located in the galaxy M101, for which many observational data exist and which has been claimed to harbour temperature fluctuations at a level of t^2 = 0.03-0.06. We have first complemented the already available optical observational datasets with a mid-infrared spectrum obtained with the Spitzer Space Telescope. Combined with optical data, this spectrum provides unprecedented information on the temperature structure of this giant HII region. A preliminary analysis based on empirical temperature diagnostics suggests that temperature fluctuations should be quite weak. We have then performed a detailed modelling using the pyCloudy package based on the photoionization code Cloudy. We have been able to produce photoionization models constrained by the observed Hb surface brightness distribution and by the known properties of the ionizing stellar population than can account for most of the line ratios within their uncertainties. Since the observational constraints are both strong and numerous, this argues against the presence of significant temperature fluctuations in H 1013. The oxygen abundance of our best model is 12 + log O/H = 8.57, as opposed to the values of 8.73 and 8.93 advocated by Esteban et al. (2009) and Bresolin (2007), respectively, based on the significant temperature fluctuations they derived. However, our model is not able to reproduce the intensities of the oxygen recombination lines . This cannot be attributed to observational uncertainties and requires an explanation other than temperature fluctuations.Comment: accepted in Astronomy & Astrophysic

    The BHK Color Diagram: a New Tool to Study Young Stellar Populations

    Get PDF
    A new method to derive age differences between the various super star clusters observed in starburst galaxies using the two color diagram (B-H) vs (H-K) is presented. This method offers a quick and easy way to differentiate very young and intermediate age stellar populations even if data on extinction are unavailable. In this case, discrimination of regions younger and older than 4 Myr is feasible. With the availability of data on extinction, the time resolution can be improved significantly. The application of the method to the starbursting system Arp 299 is presented. The validity of the method is confirmed by comparing the equivalent width of the H-alpha line with the chronological map of the northern part of NGC 3690.Comment: 32 pages, 7 figures, 1 table, AJ accepte

    The Brightest Lyα\alpha Emitter: Pop III or Black Hole?

    Get PDF
    CR7 is the brightest z=6.6Lyαz=6.6 \, {\rm Ly}\alpha emitter (LAE) known to date, and spectroscopic follow-up by Sobral et al. (2015) suggests that CR7 might host Population (Pop) III stars. We examine this interpretation using cosmological hydrodynamical simulations. Several simulated galaxies show the same "Pop III wave" pattern observed in CR7. However, to reproduce the extreme CR7 Lyα{\rm Ly}\alpha/HeII1640 line luminosities (Lα/HeIIL_{\rm \alpha/He II}) a top-heavy IMF and a massive (>107M>10^{7}{\rm M}_{\odot}) PopIII burst with age <2<2 Myr are required. Assuming that the observed properties of Lyα{\rm Ly}\alpha and HeII emission are typical for Pop III, we predict that in the COSMOS/UDS/SA22 fields, 14 out of the 30 LAEs at z=6.6z=6.6 with Lα>1043.3ergs1L_{\alpha} >10^{43.3}{\rm erg}\,{\rm s}^{-1} should also host Pop III stars producing an observable LHeII>1042.7ergs1L_{\rm He II}>10^{42.7}{\rm erg}\,{\rm s}^{-1}. As an alternate explanation, we explore the possibility that CR7 is instead powered by accretion onto a Direct Collapse Black Hole (DCBH). Our model predicts LαL_{\alpha}, LHeIIL_{\rm He II}, and X-ray luminosities that are in agreement with the observations. In any case, the observed properties of CR7 indicate that this galaxy is most likely powered by sources formed from pristine gas. We propose that further X-ray observations can distinguish between the two above scenarios.Comment: 6 pages, 4 figure

    The Stanley Foundation Bipolar Network: Results of the naturalistic follow-up study after 2.5 years of follow-up in the German centres

    Get PDF
    The Stanley Foundation Bipolar Network (SFBN) is an international, multisite network investigating the characteristics and course of bipolar disorder. Methods (history, ratings and longitudinal follow-up) are standardized and equally applied in all 7 centres. This article describes demographics and illness characteristics of the first 152 German patients enrolled in them SFBN as well as the results of 2.5 years of follow-up. Patients in Germany were usually enrolled after hospitalisation. More than 72% of the study population suffered from bipolar I disorder and 25% from bipolar 11 disorder. The mean +/- SD age of the study participants was 42.08 +/- 13.5 years, and the mean SD age of onset 24.44 +/- 10.9 years. More than 40% of the sample reported a rapid-cycling course in history, and even more a cycle acceleration overtime. 37% attempted suicide at least once. 36% had an additional Axis I disorder, with alcohol abuse being the most common one, followed by anxiety disorders. During the follow-up period, only 27% remained stable, 56% had a recurrence, 12.8% perceived subsyndromal symptoms despite treatment and regular visits. 27% suffered from a rapid-cycling course during the follow-up period. Recurrences were significantly associated with bipolar I disorder, an additional comorbid Axis I disorder, rapid cycling in history, a higher number of mood stabilizers and the long-term use of typical antipsychotics. Rapid cycling during follow-up was only associated with a rapidcycling course in history, a higher number of mood stabilizers and at least one suicide attempt in history. Copyright (c) 2003 S. Karger AG, Basel

    Gemini GMOS spectroscopy of HeII nebulae in M33

    Full text link
    We have carried out a narrow-band survey of the Local Group galaxy, M33, in the HeII4686 emission line, to identify HeII nebulae in this galaxy. With spectroscopic follow-up observations, we confirm three of seven candidate objects, including identification of two new HeII nebulae, BCLMP651, HBW673. We also obtain spectra of associated ionizing stars for all the HII regions, identifying two new WN stars. We demonstrate that the ionizing source for the known HeII nebula, MA 1, is consistent with being the early-type WN star MC8 (M33-WR14), by carrying out a combined stellar and nebular analysis of MC8 and MA1. We were unable to identify the helium ionizing sources for HBW 673 and BCLMP 651, which do not appear to be Wolf-Rayet stars. According to the [OIII]5007/Hbeta vs [NII]6584/Halpha diagnostic diagram, excitation mechanisms apart from hot stellar continuum are needed to account for the nebular emission in HBW 673, which appears to have no stellar source at all.Comment: Accepted for publication in Astronomy and Astrophysics. 22 pages, 10 figure
    corecore