812 research outputs found
Chandra and optical/IR observations of CXOJ1415.2+3610, a massive, newly discovered galaxy cluster at z~1.5
(Abridged) We report the discovery of CXO J1415.2+3610, a distant (z~1.5)
galaxy cluster serendipitously detected in a deep, high-resolution Chandra
observation targeted to study the cluster WARP J1415.1+3612 at z=1.03. This is
the highest-z cluster discovered with Chandra so far. Moreover, the total
exposure time of 280 ks with ACIS-S provides the deepest X-ray observation
currently achieved on a cluster at z>1.5. We perform an X-ray spectral fit of
the extended emission of the intracluster medium (ICM) with XSPEC, and we
detect at a 99.5% confidence level the rest frame 6.7-6.9 keV Iron K_\alpha
line complex, from which we obtain z_X=1.46\pm0.025. The analysis of the
z-3.6\mu m color-magnitude diagram shows a well defined sequence of red
galaxies within 1' from the cluster X-ray emission peak with a color range [5 <
z-3.6 \mu m < 6]. The photometric redshift obtained by spectral energy
distribution (SED) fitting is z_phot=1.47\pm 0.25. After fixing the redshift to
z=1.46, we perform the final spectral analysis and measure the average gas
temperature with a 20% error, kT=5.8^{+1.2}_{-1.0} keV, and the Fe abundance
Z_Fe = 1.3_{-0.5}^{+0.8}Z_\odot. We fit the background subtracted surface
brightness with a single beta--model out to 35" and derive the deprojected
electron density profile. The ICM mass is 1.09_{-0.2}^{+0.3}\times 10^{13}
M_\odot within 300 kpc. The total mass is M_{2500}= 8.6_{-1.7}^{+2.1} \times 10
^{13} M_\odot for R_{2500}=(220\pm 55) kpc. Extrapolating the profile at larger
radii we find M_{500}= 2.1_{-0.5}^{+0.7} \times 10 ^{14} M_\odot for R_{500} =
510_{-50}^{+55}$ kpc. This analysis establishes CXOJ1415.2+3610 as one of the
best characterized distant galaxy clusters based on X-ray data alone.Comment: 12 pages, 9 figures, A\&A in press, minor modifications in the tex
Next Generation Cosmology: Constraints from the Euclid Galaxy Cluster Survey
We study the characteristics of the galaxy cluster samples expected from the
European Space Agency's Euclid satellite and forecast constraints on
cosmological parameters describing a variety of cosmological models. The method
used in this paper, based on the Fisher Matrix approach, is the same one used
to provide the constraints presented in the Euclid Red Book (Laureijs et
al.2011). We describe the analytical approach to compute the selection function
of the photometric and spectroscopic cluster surveys. Based on the photometric
selection function, we forecast the constraints on a number of cosmological
parameter sets corresponding to different extensions of the standard LambdaCDM
model. The dynamical evolution of dark energy will be constrained to Delta
w_0=0.03 and Delta w_a=0.2 with free curvature Omega_k, resulting in a
(w_0,w_a) Figure of Merit (FoM) of 291. Including the Planck CMB covariance
matrix improves the constraints to Delta w_0=0.02, Delta w_a=0.07 and a
FoM=802. The amplitude of primordial non-Gaussianity, parametrised by f_NL,
will be constrained to \Delta f_NL ~ 6.6 for the local shape scenario, from
Euclid clusters alone. Using only Euclid clusters, the growth factor parameter
\gamma, which signals deviations from GR, will be constrained to Delta
\gamma=0.02, and the neutrino density parameter to Delta Omega_\nu=0.0013 (or
Delta \sum m_\nu=0.01). We emphasise that knowledge of the observable--mass
scaling relation will be crucial to constrain cosmological parameters from a
cluster catalogue. The Euclid mission will have a clear advantage in this
respect, thanks to its imaging and spectroscopic capabilities that will enable
internal mass calibration from weak lensing and the dynamics of cluster
galaxies. This information will be further complemented by wide-area
multi-wavelength external cluster surveys that will already be available when
Euclid flies. [Abridged]Comment: submitted to MNRA
CLASH-VLT: Testing the Nature of Gravity with Galaxy Cluster Mass Profiles
We use high-precision kinematic and lensing measurements of the total mass
profile of the dynamically relaxed galaxy cluster MACS J1206.2-0847 at
to estimate the value of the ratio between the two scalar
potentials in the linear perturbed Friedmann-Lemaitre-Robertson-Walker
metric.[...] Complementary kinematic and lensing mass profiles were derived
from exhaustive analyses using the data from the Cluster Lensing And Supernova
survey with Hubble (CLASH) and the spectroscopic follow-up with the Very Large
Telescope (CLASH-VLT). Whereas the kinematic mass profile tracks only the
time-time part of the perturbed metric (i.e. only ), the lensing mass
profile reflects the contribution of both time-time and space-space components
(i.e. the sum ). We thus express as a function of the mass
profiles and perform our analysis over the radial range . Using a spherical Navarro-Frenk-White mass profile, which
well fits the data, we obtain \eta(r_{200})=1.01\,_{-0.28}^{+0.31} at the
68\% C.L. We discuss the effect of assuming different functional forms for mass
profiles and of the orbit anisotropy in the kinematic reconstruction.
Interpreting this result within the well-studied modified gravity model,
the constraint on translates into an upper bound to the interaction
length (inverse of the scalaron mass) smaller than 2 Mpc. This tight constraint
on the interaction range is however substantially relaxed when
systematic uncertainties in the analysis are considered. Our analysis
highlights the potential of this method to detect deviations from general
relativity, while calling for the need of further high-quality data on the
total mass distribution of clusters and improved control on systematic effects.Comment: 18 pages, 3 figures, submitted to JCA
Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models
We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl alcohol)/gelatin (PVA/G) mixture and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer, were obtained via different techniques, namely, emulsion and freeze-drying, compression molding followed by salt leaching, and electrospinning. In this way, primary PDAC cells interfaced with different pore topographies, such as sponge-like pores of different shape and size or nanofiber interspaces. The aim of this study was to investigate the influence played by the scaffold architecture over cancerous cell growth and function. In all scaffolds, primary PDAC cells showed good viability and synthesized tumor-specific metalloproteinases (MMPs) such as MMP-2, and MMP-9. However, only sponge-like pores, obtained via emulsion-based and salt leaching-based techniques allowed for an organized cellular aggregation very similar to the native PDAC morphological structure. Differently, these cell clusters were not observed on PEOT/PBT electrospun scaffolds. MMP-2 and MMP-9, as active enzymes, resulted to be increased in PVA/G and PEOT/PBT sponges, respectively. These findings suggested that spongy scaffolds supported the generation of pancreatic tumor models with enhanced aggressiveness. In conclusion, primary PDAC cells showed diverse behaviors while interacting with different scaffold types that can be potentially exploited to create stage-specific pancreatic cancer models likely to provide new knowledge on the modulation and drug susceptibility of MMPs
An Improved Calculation of the Non-Gaussian Halo Mass Function
The abundance of collapsed objects in the universe, or halo mass function, is
an important theoretical tool in studying the effects of primordially generated
non-Gaussianities on the large scale structure. The non-Gaussian mass function
has been calculated by several authors in different ways, typically by
exploiting the smallness of certain parameters which naturally appear in the
calculation, to set up a perturbative expansion. We improve upon the existing
results for the mass function by combining path integral methods and saddle
point techniques (which have been separately applied in previous approaches).
Additionally, we carefully account for the various scale dependent combinations
of small parameters which appear. Some of these combinations in fact become of
order unity for large mass scales and at high redshifts, and must therefore be
treated non-perturbatively. Our approach allows us to do this, and to also
account for multi-scale density correlations which appear in the calculation.
We thus derive an accurate expression for the mass function which is based on
approximations that are valid over a larger range of mass scales and redshifts
than those of other authors. By tracking the terms ignored in the analysis, we
estimate theoretical errors for our result and also for the results of others.
We also discuss the complications introduced by the choice of smoothing filter
function, which we take to be a top-hat in real space, and which leads to the
dominant errors in our expression. Finally, we present a detailed comparison
between the various expressions for the mass functions, exploring the accuracy
and range of validity of each.Comment: 28 pages, 13 figures; v2: text reorganized and some figured modified
for clarity, results unchanged, references added. Matches version published
in JCA
CLASH-VLT: The inner slope of the MACS J1206.2-0847 mass density profile
The inner slope gammaDM of the dark matter (DM) density profile of
cosmological halos carries information about the properties of DM and/or
baryonic processes affecting the halo gravitational potential. Cold DM
cosmological simulations predict steep inner slopes, gammaDM>~1. We test this
prediction on the MACS J1206.2-0847 cluster at redshift z=0.44, whose DM
density profile was claimed to be cored at the center. We determine the cluster
DM density profile from 2 kpc from the cluster center to the virial radius (~2
Mpc), using the velocity distribution of ~500 cluster galaxies and the velocity
dispersion profile of the Brightest Cluster Galaxy (BCG), obtained from
VIMOS@VLT and MUSE@VLT data. We solve the Jeans equation of dynamical
equilibrium using an upgraded version of the MAMPOSSt method. The total mass
profile is modeled as a sum of a generalized-NFW profile that describes the DM
component, allowing for a free inner slope of the density profile, a Jaffe
profile that describes the BCG stellar mass component, and a non-parametric
baryonic profile that describes the sum of the remaining galaxy stellar mass
and of the hot intra-cluster gas mass. Our total mass profile is in remarkable
agreement with independent determinations based on X-ray observations and
strong lensing. We find gammaDM=0.7 -0.1 +0.2 (68% confidence levels),
consistent with predictions from recent LambdaCDM cosmological numerical
simulations.Comment: Submitted to ApJ on June, 1st 2023. 14 pages, 9 figure
CLASH-VLT: A Highly Precise Strong Lensing Model of the Galaxy Cluster RXC J2248.7-4431 (Abell S1063) and Prospects for Cosmography
We perform a comprehensive study of the total mass distribution of the galaxy
cluster RXCJ2248 () with a set of high-precision strong lensing
models, which take advantage of extensive spectroscopic information on many
multiply lensed systems. In the effort to understand and quantify inherent
systematics in parametric strong lensing modelling, we explore a collection of
22 models where we use different samples of multiple image families,
parametrizations of the mass distribution and cosmological parameters. As input
information for the strong lensing models, we use the CLASH HST imaging data
and spectroscopic follow-up observations, carried out with the VIMOS and MUSE
spectrographs, to identify bona-fide multiple images. A total of 16 background
sources, over the redshift range , are multiply lensed into 47 images,
24 of which are spectroscopically confirmed and belong to 10 individual
sources. The cluster total mass distribution and underlying cosmology in the
models are optimized by matching the observed positions of the multiple images
on the lens plane. We show that with a careful selection of a sample of
spectroscopically confirmed multiple images, the best-fit model reproduces
their observed positions with a rms of in a fixed flat CDM
cosmology, whereas the lack of spectroscopic information lead to biases in the
values of the model parameters. Allowing cosmological parameters to vary
together with the cluster parameters, we find (at confidence level)
and for a flat
CDM model, and and
for a universe with and free
curvature. Using toy models mimicking the overall configuration of RXCJ2248, we
estimate the impact of the line of sight mass structure on the positional rms
to be .(ABRIDGED)Comment: 23 pages, 13 figures, accepted for publication in A&
- …