577 research outputs found

    Colloidal hard-rod fluids near geometrically structured substrates

    Full text link
    Density functional theory is used to study colloidal hard-rod fluids near an individual right-angled wedge or edge as well as near a hard wall which is periodically patterned with rectangular barriers. The Zwanzig model, in which the orientations of the rods are restricted to three orthogonal orientations but their positions can vary continuously, is analyzed by numerical minimization of the grand potential. Density and orientational order profiles, excess adsorptions, as well as surface and line tensions are determined. The calculations exhibit an enrichment [depletion] of rods lying parallel and close to the corner of the wedge [edge]. For the fluid near the geometrically patterned wall, complete wetting of the wall -- isotropic liquid interface by a nematic film occurs as a two-stage process in which first the nematic phase fills the space between the barriers until an almost planar isotropic -- nematic liquid interface has formed separating the higher-density nematic fluid in the space between the barriers from the lower-density isotropic bulk fluid. In the second stage a nematic film of diverging film thickness develops upon approaching bulk isotropic -- nematic coexistence.Comment: 9 pages, 9 figure

    Testing the relevance of effective interaction potentials between highly charged colloids in suspension

    Full text link
    Combining cell and Jellium model mean-field approaches, Monte Carlo together with integral equation techniques, and finally more demanding many-colloid mean-field computations, we investigate the thermodynamic behavior, pressure and compressibility of highly charged colloidal dispersions, and at a more microscopic level, the force distribution acting on the colloids. The Kirkwood-Buff identity provides a useful probe to challenge the self-consistency of an approximate effective screened Coulomb (Yukawa) potential between colloids. Two effective parameter models are put to the test: cell against renormalized Jellium models

    Environmental management decision-making in certified hotels

    Get PDF
    This paper analyses environmental decision-making against two axes, motivations and decision-making processes, to understand the reasons for pro-environmental behaviour by the managements of Spanish Eco-management and Audit Scheme (EMAS)-certified hotels. Mixed methods were used to study perceptions of EMAS and reasons for being certified, with current and lapsed EMAS-certified firms triangulated against expert interviews and documentary evidence. Four groups of hotels were differentiated: Strategic hotels (22%) (with high levels of integrated environmental management), Followers (48%), Greenwashers (11%) and Laggers (19%) (with low levels of integrated environmental management). Most hotels were found to be internally driven in their purpose and ad hoc in their decision-making, with limited understanding of externally driven benefits and motivation for more systematic management systems. This questions the success of EMAS as both a continuous improvement management and as a market-based regulation tool for hotels. Few hotels overall related high environmental standards to the possibilities of gaining market advantage: most wished to avoid legal challenges. The paper also illustrates the ways in which hotels opportunistically switch certification systems to get what they see as a better deal. © 2011 Taylor & Francis

    Pressurometry and biomechanical study of the foot in padel

    Get PDF
    El pádel es un deporte muy practicado en países como España, Argentina y Brasil, pero existen poco artículos científicos que muestren la lesividad de su práctica. Los movimientos más frecuentes del pádel pueden incidir de forma lesiva en el pie y en la articulación del tobillo. Por ello el objetivo del presente estudio fue profundizar en el análisis del rol del pie en la ejecución de los movimientos más representativos del pádel mediante técnicas de video y de presurometría. El estudio fue dividido en dos partes: análisis presurométrico de dos gestos (carrera frontal y el split-step), y filmación del pié en el trascurso de dos partidos. Las principales conclusiones obtenidas del estudio son la importancia del antepié en los movimientos analizados, la importancia de un diseño específico del calzado para el pádel, y la importancia del entrenamiento neuromuscular y propioceptivo del complejo pie-tobillo, especialmente de los flexores plantares

    Colloids in light fields: particle dynamics in random and periodic energy landscapes

    Full text link
    The dynamics of colloidal particles in potential energy landscapes have mainly been investigated theoretically. In contrast, here we discuss the experimental realization of potential energy landscapes with the help of light fields and the observation of the particle dynamics by video microscopy. The experimentally observed dynamics in periodic and random potentials are compared to simulation and theoretical results in terms of, e.g. the mean-squared displacement, the time-dependent diffusion coefficient or the non-Gaussian parameter. The dynamics are initially diffusive followed by intermediate subdiffusive behaviour which again becomes diffusive at long times. How pronounced and extended the different regimes are, depends on the specific conditions, in particular the shape of the potential as well as its roughness or amplitude but also the particle concentration. Here we focus on dilute systems, but the dynamics of interacting systems in external potentials, and thus the interplay between particle-particle and particle-potential interactions, is also mentioned briefly. Furthermore, the observed dynamics of dilute systems resemble the dynamics of concentrated systems close to their glass transition, with which it is compared. The effect of certain potential energy landscapes on the dynamics of individual particles appears similar to the effect of interparticle interactions in the absence of an external potential

    Winds induce CO2 exchange with the atmosphere and vadose zone transport in a karstic ecosystem

    Get PDF
    Research on the subterranean CO dynamics has focused individually on either surface soils or bedrock cavities, neglecting the interaction of both systems as a whole. In this regard, the vadose zone contains CO-enriched air (ca. 5% by volume) in the first meters, and its exchange with the atmosphere can represent from 10 to 90% of total ecosystem CO emissions. Despite its importance, to date still lacking are reliable and robust databases of vadose zone CO contents that would improve knowledge of seasonal-annual aboveground-belowground CO balances. Here we study 2.5 years of vadose zone CO dynamics in a semiarid ecosystem. The experimental design includes an integrative approach to continuously measure CO in vertical and horizontal soil profiles, following gradients from surface to deep horizons and from areas of net biological CO production (under plants) to areas of lowest CO production (bare soil), as well as a bedrock borehole representing karst cavities and ecosystem-scale exchanges. We found that CO followed similar seasonal patterns for the different layers, with the maximum seasonal values of CO delayed with depth (deeper more delayed). However, the behavior of CO transport differed markedly among layers. Advective transport driven by wind induced CO emission both in surface soil and bedrock, but with negligible effect on subsurface soil, which appears to act as a buffer impeding rapid CO exchanges. Our study provides the first evidence of enrichment of CO under plant, hypothesizing that CO-rich air could come from root zone or by transport from deepest layers through cracks and fissures.These data were funded by the Andalusian regional government project GEOCARBO (P08-RNM-3721), including European Union ERDF funds, with support from Spanish Ministry of Science and Innovation projects SOILPROF (CGL2011-15276-E), CARBORAD (CGL2011-27493), and GEISpain (CGL2014-52838-C2-1-R). This research was supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme, DIESEL project (625988).Peer Reviewe

    Generally covariant state-dependent diffusion

    Get PDF
    Statistical invariance of Wiener increments under SO(n) rotations provides a notion of gauge transformation of state-dependent Brownian motion. We show that the stochastic dynamics of non gauge-invariant systems is not unambiguously defined. They typically do not relax to equilibrium steady states even in the absence of extenal forces. Assuming both coordinate covariance and gauge invariance, we derive a second-order Langevin equation with state-dependent diffusion matrix and vanishing environmental forces. It differs from previous proposals but nevertheless entails the Einstein relation, a Maxwellian conditional steady state for the velocities, and the equipartition theorem. The over-damping limit leads to a stochastic differential equation in state space that cannot be interpreted as a pure differential (Ito, Stratonovich or else). At odds with the latter interpretations, the corresponding Fokker-Planck equation admits an equilibrium steady state; a detailed comparison with other theories of state-dependent diffusion is carried out. We propose this as a theory of diffusion in a heat bath with varying temperature. Besides equilibrium, a crucial experimental signature is the non-uniform steady spatial distribution.Comment: 24 page

    Plantar pressure and foot temperature responses to acute barefoot and shod running

    Get PDF
    Purpose. Increased contact pressure and skin friction may lead to higher skin temperature. Here, we hypothesized a relationship between plantar pressure and foot temperature. To elicit different conditions of stress to the foot, participants performed running trials of barefoot and shod running. Methods. Eighteen male recreational runners ran shod and barefoot at a self-selected speed for 15 min over different days. Before and immediately after running, plantar pressure during standing (via a pressure mapping system) and skin temperature (using thermography) were recorded. Results. No significant changes were found in plantar pressure after barefoot or shod conditions (p > 0.9). Shod running elicited higher temperatures in the forefoot (by 0.5-2.2 ºC or 0.1-1.2% compared with the whole foot, p -0.5, p > 0.05). Conclusions. The increase in temperature after the shod condition was most likely the result of footwear insulation. However, variation of the temperature in the rearfoot was higher after barefoot running, possible due to a higher contact load. Changes in temperature could not predict changes in plantar pressure and vice-versa
    corecore