62 research outputs found

    Mirage Torsion

    Get PDF
    Z_NxZ_M orbifold models admit the introduction of a discrete torsion phase. We find that models with discrete torsion have an alternative description in terms of torsionless models. More specifically, discrete torsion can be 'gauged away' by changing the shifts by lattice vectors. Similarly, a large class of the so-called generalized discrete torsion phases can be traded for changing the background fields (Wilson lines) by lattice vectors. We further observe that certain models with generalized discrete torsion are equivalent to torsionless models with the same gauge embedding but based on different compactification lattices. We also present a method of classifying heterotic Z_NxZ_M orbifolds.Comment: 26 pages, 3 figures, v2: matches version published in JHE

    Heterotic orbifold models on Lie lattice with discrete torsion

    Full text link
    We provide a new class of Z_N x Z_M heterotic orbifolds on non-factorisable tori, whose boundary conditions are defined by Lie lattices. Generally, point groups of these orbifolds are generated by Weyl reflections and outer automorphisms of the lattices. We classify abelian orbifolds with and without discrete torsion. Then we find that some of these models have smaller Euler numbers than those of models on factorisable tori T^2 x T^2 x T^2. There is a possibility that these orbifolds provide smaller generation numbers of N=1 chiral matter fields than factorisable models.Comment: 24 pages, 5 figures; v2: a few errors on tables are corrected, typos corrected, version to appear in JHE

    Ceramographic Examinations of Irradiated AGR-1 Fuel Compacts

    Get PDF
    The AGR 1 experiment involved irradiating 72 cylindrical fuel compacts containing tri-structural isotropic (TRISO)-coated particles to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures observed out of almost 300,000 particles. Six irradiated AGR 1 fuel compacts were selected for microscopy that span a range of irradiation conditions (temperature, burnup, and fast fluence). These six compacts also included all four TRISO coating variations irradiated in the AGR experiment. The six compacts were cross-sectioned both transversely and longitudinally, mounted, ground, and polished after development of careful techniques for preserving particle structures against preparation damage. From 36 to 79 particles within each cross section were exposed near enough to midplane for optical microscopy of kernel, buffer, and coating behavior. The microstructural analysis focused on kernel swelling and porosity, buffer densification and fracture, debonding between the buffer and inner pyrolytic carbon (IPyC) layers, and fractures in the IPyC and SiC layers. Three basic particle morphologies were established according to the extent of bonding between the buffer and IPyC layers: complete debonding along the interface (Type A), no debonding along the interface (Type B), and partial debonding (Type AB). These basic morphologies were subdivided according to whether the buffer stayed intact or fractured. The resulting six characteristic morphologies were used to classify particles within each cross section, but no spatial patterns were clearly observed in any of the cross-sectional morphology maps. Although positions of particle types appeared random within compacts, examining a total of 931 classified particles allowed other relationships among morphological types to be established

    Improved bone defect healing by a superagonistic GDF5 variant derived from a patient with multiple synostoses syndrome

    Get PDF
    Multiple synostoses syndrome 2 (SYNS2) is a rare genetic disease characterized by multiple fusions of the joints of the extremities, like phalangeal joints, carpal and tarsal joints or the knee and elbows. SYNS2 is caused by point mutations in the Growth and Differentiation Factor 5 (GDF5), which plays an essential role during skeletal development and regeneration. We selected one of the SYNS2-causing GDF5 mutations, p.N445T, which is known to destabilize the interaction with the Bone Morphogenetic Protein (BMP) antagonist NOGGIN (NOG), in order to generate the superagonistic GDF5 variant GDF5(N445T). In this study, we tested its capacity to support regeneration in a rat critical-sized defect model in vivo. MicroCT and histological analyses indicate that GDF5(N445T)-treated defects show faster and more efficient healing compared to GDF5 wild type (GDF5(wt))-treated defects. Microarray-based gene expression and quantitative PCR analyses from callus tissue point to a specific acceleration of the early phases of bone healing, comprising the inflammation and chondrogenesis phase. These results support the concept that disease-deduced growth factor variants are promising lead structures for novel therapeutics with improved clinical activities

    Seasonal forage quality of rangelands across Kansas

    Get PDF
    The K-State Research and Extension Forage Task Force surveyed Kansas rangelands during the course of seasonal changes to enable producers and managers to better estimate the feed value of their pasture forage during particular times of the year. Kansas’ two distinct rangeland vegetation types, shortgrass and tallgrass prairie, were evaluated. Forage samples were collected monthly from two rangeland sites in each of 10 Kansas counties. Tallgrass vegetation was lowest in acid detergent fiber (ADF) and greatest in crude protein (CP) from May to July, and rapidly increased in ADF and declined in CP the rest of the season. Shortgrass vegetation was also lower in ADF and greater in CP from May to July, but changed less from early summer to the winter than did tallgrass vegetation. Degradable intake protein (DIP) was greatest for tallgrass vegetation in May. Otherwise DIP was similar between tallgrass and shortgrass except in February and March when shortgrass had greater DIP. DIP was greatest in May and June for both vegetation types and gradually declined from June to December. Undegradable intake protein (UIP) values were greater for tallgrass vegetation than for shortgrass vegetation from May through July, but all other months were similar. Seasonal forage quality is different between and within rangeland vegetation types, and identification of dominant vegetation is a key determinant in choosing appropriate animal nutritional management strategies

    Spinor-Vector Duality in Heterotic String Orbifolds

    Get PDF
    The three generation heterotic-string models in the free fermionic formulation are among the most realistic string vacua constructed to date, which motivated their detailed investigation. The classification of free fermion heterotic string vacua has revealed a duality under the exchange of spinor and vector representations of the SO(10) GUT symmetry over the space of models. We demonstrate the existence of the spinor-vector duality using orbifold techniques, and elaborate on the relation of these vacua to free fermionic models.Comment: 20 pages. v2 minor corrections. Version to appear on JHEP. v3 misprints correcte

    Discrete R-symmetries and Anomaly Universality in Heterotic Orbifolds

    Get PDF
    We study discrete R-symmetries, which appear in 4D low energy effective field theory derived from hetetoric orbifold models. We derive the R-symmetries directly from geometrical symmetries of orbifolds. In particular, we obtain the corresponding R-charges by requiring that the couplings be invariant under these symmetries. This allows for a more general treatment than the explicit computations of correlation functions made previously by the authors, including models with discrete Wilson lines, and orbifold symmetries beyond plane-by-plane rotational invariance. Surprisingly, for the cases covered by earlier explicit computations, the R-charges differ from the previous result. We study the anomalies associated with these R-symmetries, and comment on the results.Comment: 21 pages, 2 figures. Minor changes, typos corrected. Matches JHEP published versio

    A perfect match of MSSM-like orbifold and resolution models via anomalies

    Full text link
    Compactification of the heterotic string on toroidal orbifolds is a promising set-up for the construction of realistic unified models of particle physics. The target space dynamics of such models, however, drives them slightly away from the orbifold point in moduli space. This resolves curvature singularities, but makes the string computations very difficult. On these smooth manifolds we have to rely on an effective supergravity approximation in the large volume limit. By comparing an orbifold example with its blow-up version, we try to transfer the computational power of the orbifold to the smooth manifold. Using local properties, we establish a perfect map of the the chiral spectra as well as the (local) anomalies of these models. A key element in this discussion is the Green-Schwarz anomaly polynomial. It allows us to identify those redefinitions of chiral fields and localized axions in the blow-up process which are relevant for the interactions (such as Yukawa-couplings) in the model on the smooth space.Comment: 2+35 pages, 1 figur

    Forming conjectures within a spreadsheet environment

    Get PDF
    This paper is concerned with the use of spreadsheets within mathematical investigational tasks. Considering the learning of both children and pre-service teaching students, it examines how mathematical phenomena can be seen as a function of the pedagogical media through which they are encountered. In particular, it shows how pedagogical apparatus influence patterns of social interaction, and how this interaction shapes the mathematical ideas that are engaged with. Notions of conjecture, along with the particular faculty of the spreadsheet setting, are considered with regard to the facilitation of mathematical thinking. Employing an interpretive perspective, a key focus is on how alternative pedagogical media and associated discursive networks influence the way that students form and test informal conjectures
    corecore