108 research outputs found

    Mud extrusion dynamics constrained from 3D seismics in the Mercator Mud Volcano. El Arraiche mud volcano field, Gulf of Cadiz

    Get PDF
    Located on the western Moroccan continental shelf of the Gulf of Cadiz, the Mercator Mud Volcano (MMV) is one of a total of eight mud volcanoes which compose the El Arraiche mud volcano field. We collected a high-resolution P-cable 3D seismic cube during the Charles Darwin cruise 178 in April 2006, covering an area of 25 km2. The data image the upper 500-1000 m of the MMV. El Arraiche mud volcano field is located in the top of the Tortonian accretionary wedge in the Gulf of Cadiz, between 200 and 700 m water deep. Despite of the general compressive trend of the Gulf of Cadiz due to the westward movement of the Gibraltar arc, the local regimen of the western Moroccan margin is extensional in the study area. The MMV is a 2.5 km diameter positive conical structure at 350 m water deep that rises from the flank of a salt diapir. The high-resolution 3D cube shows the main internal structure in the southern flank of an anticline and a secondary structure southwest of it. Parallel and continuous reflections onlapping the anticline structure define the seismic character outside the mud volcano. The body of the main structure shows the typical "Christmas tree" features related to mud flow deposits. The preliminary interpretation of the 3D seismic cube shows four main mud flows southwestward oriented from the main structure and interfingered into the hemipelagic regional sedimentation. From deeper to shallower, the flows are located approximately at 0.870 s, 0.838 s, 0.774 s, and 0.685 s travel time, respectively. The extrusions correlate with the main seismic sequences observed in the surrounding hemipelagic deposits. The maximum run-out distance for the mud flows is approximately 1 km southwestward from the main structure, which corresponds to the third youngest mud flow described. The secondary "Christmas tree" structure penetrates the hemipelagic sediments almost to the seabed. Its seismic character is defined by low amplitude and chaotic signal. Several mud flows are interfingered with the surrounding sediments and, in some cases, overlap the mud flows from the main structure but they are less extensive and thinner but more frequent than those from the main structure. The MMV is an active mud volcano and depends on complex fluid and mud dynamics. The existence of a secondary and apparently "abandoned" structure indicates the variation of mud pathways during the evolution of its plumbing system

    Monitoring Of CO2 Leakage Using High-Resolution 3D Seismic Data – Examples From Snøhvit, Vestnesa Ridge And The Western Barents Sea

    Get PDF
    Source at https://doi.org/10.3997/2214-4609.201802965.Injection of CO2 in subsurface reservoirs may cause overburden deformation and CO2 leakage. The aim of this study is to apply technologies for detection and monitoring of CO2 leakage and deformation above the injection reservoirs. The examples of this study include data from the Vestnesa Ridge natural seep site, the Snøhvit gas field and CO2 storage site region, and the Gemini North gas reservoir. Reprocessing of existing 3D high-resolution seismic data allows resolving features with a vertical and lateral resolution down to c. 1 m and c. 5 m respectively. The current acquisition systems could be modified to image structures down to one meter in both the vertical and horizontal directions. We suggest a monitoring workflow that includes baseline and time-lapse acquisition of highresolution 3D seismic data, integrated with geochemical, geophysical, and geotechnical seabed core and watercolumn measurements. The outcome of such a workflow can deliver reliable quantitative property volumes of the subsurface and will be able to image meter-sized anomalies of fluid leakage and deformation in the overburden

    Pre-breakup magmatism on the Vøring margin: Insight from new sub-basalt imaging and results from Ocean Drilling program hole 642E

    Get PDF
    Highlights • Sub-basalt imaging improvement on the Vøring Margin • Definition of a new seismic facies unit: the Lower Series Flows • Significant organic carbon content within the melting crustal segment • Apectodinium augustum marker for the PETM is reworked into the Lower Series Flows • The Lower Series Flows, early Eocene in age, predate the Vøring Margin breakup Abstract Improvements in sub-basalt imaging combined with petrological and geochemical observations from the Ocean Drilling Program (ODP) Hole 642E core provide new constraints on the initial breakup processes at the Vøring Margin. New and reprocessed high quality seismic data allow us to identify a new seismic facies unit which we define as the Lower Series Flows. This facies unit is seismically characterized by wavy to continuous subparallel reflections with an internal disrupted and hummocky shape. Drilled lithologies, which we correlate to this facies unit, have been interpreted as subaqueous flows extruding and intruding into wet sediments. Locally, the top boundary of this facies unit is defined as a negative in polarity reflection, and referred as the K-Reflection. This reflection can be correlated with the spatial extent of pyroclastic deposits, emplaced during transitional shallow marine to subaerial volcanic activities during the rift to drift transition. The drilled Lower Series Flows consist of peraluminous, cordierite bearing peperitic basaltic andesitic to dacitic flows interbedded with thick volcano-sedimentary deposits and intruded sills. The peraluminous geochemistry combined with available C (from calcite which fills vesicles and fractures), Sr, Nd, and Pb isotopes data point towards upper crustal rock-mantle magma interactions with a significant contribution of organic carbon rich pelagic sedimentary material during crustal anatexis. From biostratigraphic analyses, Apectodinium augustum was found in the The Lower Series Flows. This species is a marker for the Paleocene – Eocene Thermal Maximum (PETM). However, the absence of very low carbon isotope values (from bulk organic matter), that characterize the PETM, imply that A.augustum was reworked into the early Eocene sediments of this facies unit which predate the breakup time of the Vøring Margin. Finally, a plausible conceptual emplacement model for the Lower Series Flows facies unit is proposed. This model comprises several stages: (1) the emplacement of subaqueous peperitic basaltic andesitic flows intruding and/or extruding wet sediments; (2) a subaerial to shallow marine volcanism and extrusion of dacitic flows; (3) a proto-breakup phase with intense shallow marine to subaerial explosive volcanism responsible for pyroclastic flow deposits which can be correlated with the seismic K-Reflection and (4) the main breakup stage with intense transitional tholeiitic MORB-type volcanism and large subsidence concomitant with the buildup of the Seaward Dipping Reflector wedge

    Mechanisms of overburden deformation associated with the emplacement of the Tulipan sill, mid-Norwegian margin

    Get PDF
    The emplacement of igneous intrusions into sedimentary basins mechanically deforms the host rocks and causes hydrocarbon maturation. Existing models of host-rock deformation are investigated using high-quality 3D seismic and industry well data in the western Møre Basin offshore mid-Norway. The models include synemplacement (e.g., elastic bending-related active uplift and volume reduction of metamorphic aureoles) and postemplacement (e.g., differential compaction) mechanisms. We use the seismic interpretations of five horizons in the Cretaceous-Paleogene sequence (Springar, Tang, and Tare Formations) to analyze the host rock deformation induced by the emplacement of the underlying saucer-shaped Tulipan sill. The results show that the sill, emplaced between 55.8 and 54.9 Ma, is responsible for the overlying dome structure observed in the seismic data. Isochron maps of the deformed sediments, as well as deformation of the younger postemplacement sediments, document a good match between the spatial distribution of the dome and the periphery of the sill. The thickness t of the Tulipan is less than 100 m, whereas the amplitude f of the overlying dome ranges between 30 and 70 m. Spectral decomposition maps highlight the distribution of fractures in the upper part of the dome. These fractures are observed in between hydrothermal vent complexes in the outer parts of the dome structure. The 3D seismic horizon interpretation and volume rendering visualization of the Tulipan sill reveal fingers and an overall saucer-shaped geometry. We conclude that a combination of different mechanisms of overburden deformation, including (1) elastic bending, (2) shear failure, and (3) differential compaction, is responsible for the synemplacement formation and the postemplacement modification of the observed dome structure in the Tulipan area

    Breakup volcanism and plate tectonics in the NW Atlantic

    Get PDF
    The seismic, magnetic, and gravity data presented in this study were provided by TGS. Seismic interpretation was done using HS Kingdom software. Grid interpolations and map compilations were established using Geosoft Oasis Montaj and ArcGis softwares. We would like thank Craig Magee, Alexander Lewis Peace, the Editor and the Associated Editor for helpful comments and guidance that improved the paper. We acknowledge the support from the Research Council of Norway through its Center of Excellence funding scheme, project 223272 (CEED).Peer reviewedPostprin

    Focused methane migration formed pipe structures in permeable sandstones: Insights from uncrewed aerial vehicle-based digital outcrop analysis in Varna, Bulgaria

    Get PDF
    Focused fluid flow shapes the evolution of marine sedimentary basins by transferring fluids and pressure across geological formations. Vertical fluid conduits may form where localized overpressure breaches a cap rock (permeability barrier) and thereby transports overpressured fluids towards shallower reservoirs or the surface. Field outcrops of an Eocene fluid flow system at Pobiti Kamani and Beloslav Quarry (ca 15 km west of Varna, Bulgaria) reveal large carbonate‐cemented conduits, which formed in highly permeable, unconsolidated, marine sands of the northern Tethys Margin. An uncrewed aerial vehicle with an RGB sensor camera produces ortho‐rectified image mosaics, digital elevation models and point clouds of the two kilometre‐scale outcrop areas. Based on these data, geological field observations and petrological analysis of rock/core samples; fractures and vertical fluid conduits were mapped and analyzed with centimetre accuracy. The results show that both outcrops comprise several hundred carbonate‐cemented fluid conduits (pipes), oriented perpendicular to bedding, and at least seven bedding‐parallel calcite cemented interbeds which differ from the hosting sand formation only by their increased amount of cementation. The observations show that carbonate precipitation likely initiated around areas of focused fluid flow, where methane entered the formation from the underlying fractured subsurface. These first carbonates formed the outer walls of the pipes and continued to grow inward, leading to self‐sustaining and self‐reinforcing focused fluid flow. The results, supported by literature‐based carbon and oxygen isotope analyses of the carbonates, indicate that ambient seawater and advected fresh/brackish water were involved in the carbonate precipitation by microbial methane oxidation. Similar structures may also form in modern settings where focused fluid flow advects fluids into overlying sand‐dominated formations, which has wide implications for the understanding of how focusing of fluids works in sedimentary basins with broad consequences for the migration of water, oil and gas

    Rifting under steam – how rift magmatism triggers methane venting from sedimentary basins

    Get PDF
    During opening of a new ocean magma intrudes into the surrounding sedimentary basins. Heat provided by the intrusions matures the host rock creating metamorphic aureoles potentially releasing large amounts of hydrocarbons. These hydrocarbons may migrate to the seafloor in hydrothermal vent complexes in sufficient volumes to trigger global warming, e.g. during the Paleocene Eocene Thermal Maximum (PETM). Mound structures at the top of buried hydrothermal vent complexes observed in seismic data off Norway were previously interpreted as mud volcanoes and the amount of released hydrocarbon was estimated based on this interpretation. Here, we present new geophysical and geochemical data from the Gulf of California suggesting that such mound structures could in fact be edifices constructed by the growth of black-smoker type chimneys rather than mud volcanoes. We have evidence for two buried and one active hydrothermal vent system outside the rift axis. The vent releases several hundred degrees Celsius hot fluids containing abundant methane, mid-ocean-ridge-basalt (MORB)-type helium, and precipitating solids up to 300 m high into the water column. Our observations challenge the idea that methane is emitted slowly from rift-related vents. The association of large amounts of methane with hydrothermal fluids that enter the water column at high pressure and temperature provides an efficient mechanism to transport hydrocarbons into the water column and atmosphere, lending support to the hypothesis that rapid climate change such as during the PETM can be triggered by magmatic intrusions into organic-rich sedimentary basins

    Shallow-water hydrothermal venting linked to the Palaeocene–Eocene Thermal Maximum

    Get PDF
    The Palaeocene–Eocene Thermal Maximum (PETM) was a global warming event of 5–6 °C around 56 million years ago caused by input of carbon into the ocean and atmosphere. Hydrothermal venting of greenhouse gases produced in contact aureoles surrounding magmatic intrusions in the North Atlantic Igneous Province have been proposed to play a key role in the PETM carbon-cycle perturbation, but the precise timing, magnitude and climatic impact of such venting remains uncertain. Here we present seismic data and the results of a five-borehole transect sampling the crater of a hydrothermal vent complex in the Northeast Atlantic. Stable carbon isotope stratigraphy and dinoflagellate cyst biostratigraphy reveal a negative carbon isotope excursion coincident with the appearance of the index taxon Apectodinium augustum in the vent crater, firmly tying the infill to the PETM. The shape of the crater and stratified sediments suggests large-scale explosive gas release during the initial phase of vent formation followed by rapid, but largely undisturbed, diatomite-rich infill. Moreover, we show that these vents erupted in very shallow water across the North Atlantic Igneous Province, such that volatile emissions would have entered the atmosphere almost directly without oxidation to CO2 and at the onset of the PETM
    • …
    corecore