8 research outputs found

    Increasing prevalence of obesity and diabetes among patients evaluated for liver transplantation in a Swiss tertiary referral center: a 10-year retrospective analysis.

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is now the first cause of chronic liver disease in developed countries. We aimed to assess trends in the prevalence of obesity, type 2 diabetes mellitus (T2DM) and NAFLD in patients undergoing liver transplantation evaluation and to assess whether obese patients were less likely to be listed or had an increased drop-out rate after listing. We conducted a retrospective study of all consecutive patients who underwent liver transplantation evaluation at a Swiss tertiary referral centre between January 2009 and March 2020. A total of 242 patients were included, 83% were male. The median age was 59 years (IQR, 51-64 years). The most common causes of end-stage liver disease were viral hepatitis (28%), alcoholic liver disease (21%) and NAFLD (12%). Obesity was present in 28% of our cohort, with a significant increase over time. Prevalence of type 2 diabetes mellitus followed the same trend (p = 0.02). The proportions of non-listed and listed obese patients did not differ (21% vs. 30% respectively; p = 0.3). The prevalence of obesity and type 2 diabetes mellitus significantly increased over our study period. Obese patients had similar chances of being listed. The landscape of liver transplantation indications is shifting towards NAFLD, highlighting the urgent need to prevent NAFLD progression

    On the potential for CO<sub>2</sub> mineral storage in continental flood basalts – PHREEQC batch- and 1D diffusion–reaction simulations

    Get PDF
    <p>Abstract</p> <p>Continental flood basalts (CFB) are considered as potential CO<sub>2</sub> storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO<sub>2</sub> point emission sources.</p> <p>Based on the mineral and glass composition of the Columbia River Basalt (CRB) we estimated the potential of CFB to store CO<sub>2</sub> in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass) and the local equilibrium assumption for secondary phases (weathering products). The simulations were divided into closed-system batch simulations at a constant CO<sub>2</sub> pressure of 100 bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H<sub>2</sub>O in scCO<sub>2</sub>, and finally 1D reactive diffusion simulations giving reactivity at CO<sub>2</sub> pressures varying from 0 to 100 bar.</p> <p>Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO<sub>2</sub> mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40 C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 – 100 C), magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO<sub>2</sub> stored as solid carbonates, if CO<sub>2</sub> is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO<sub>2</sub> phase with limited amount of water, the total carbonation potential is limited by the amount of water present for hydration of basalt.</p
    corecore