30 research outputs found
Impedance analysis of secondary phases in a Co-implanted ZnO single crystal
published_or_final_versio
A meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens
Understanding the mechanisms by which plants trigger host defenses in response to viruses has been a challenging problem owing to the multiplicity of factors and complexity of interactions involved. The advent of genomic techniques, however, has opened the possibility to grasp a global picture of the interaction. Here, we used Arabidopsis thaliana to identify and compare genes that are differentially regulated upon infection with seven distinct (+)ssRNA and one ssDNA plant viruses. In the first approach, we established lists of genes differentially affected by each virus and compared their involvement in biological functions and metabolic processes. We found that phylogenetically related viruses significantly alter the expression of similar genes and that viruses naturally infecting Brassicaceae display a greater overlap in the plant response. In the second approach, virus-regulated genes were contextualized using models of transcriptional and protein-protein interaction networks of A. thaliana. Our results confirm that host cells undergo significant reprogramming of their transcriptome during infection, which is possibly a central requirement for the mounting of host defenses. We uncovered a general mode of action in which perturbations preferentially affect genes that are highly connected, central and organized in modules. © 2012 Rodrigo et al.This work was supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN) grants BFU2009-06993 (S. F. E.) and BIO2006-13107 (C. L.) and by Generalitat Valenciana grant PROMETEO2010/016 (S. F. E.). G. R. is supported by a graduate fellowship from the Generalitat Valenciana (BFPI2007-160) and J.C. by a contract from MICINN grant TIN2006-12860. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Rodrigo Tarrega, G.; Carrera Montesinos, J.; Ruiz-Ferrer, V.; Del Toro, F.; Llave, C.; Voinnet, O.; Elena Fito, SF. (2012). A meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens. PLoS ONE. 7(7):40526-40526. https://doi.org/10.1371/journal.pone.0040526S405264052677Peng, X., Chan, E. Y., Li, Y., Diamond, D. L., Korth, M. J., & Katze, M. G. (2009). Virus–host interactions: from systems biology to translational research. Current Opinion in Microbiology, 12(4), 432-438. doi:10.1016/j.mib.2009.06.003Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 11(8), 539-548. doi:10.1038/nrg2812Maule, A., Leh, V., & Lederer, C. (2002). The dialogue between viruses and hosts in compatible interactions. Current Opinion in Plant Biology, 5(4), 279-284. doi:10.1016/s1369-5266(02)00272-8Whitham, S. A., Quan, S., Chang, H.-S., Cooper, B., Estes, B., Zhu, T., … Hou, Y.-M. (2003). Diverse RNA viruses elicit the expression of common sets of genes in susceptibleArabidopsis thalianaplants. The Plant Journal, 33(2), 271-283. doi:10.1046/j.1365-313x.2003.01625.xBailer, S., & Haas, J. (2009). Connecting viral with cellular interactomes. Current Opinion in Microbiology, 12(4), 453-459. doi:10.1016/j.mib.2009.06.004Whitham, S. A., Yang, C., & Goodin, M. M. (2006). Global Impact: Elucidating Plant Responses to Viral Infection. Molecular Plant-Microbe Interactions, 19(11), 1207-1215. doi:10.1094/mpmi-19-1207MacPherson, J. I., Dickerson, J. E., Pinney, J. W., & Robertson, D. L. (2010). Patterns of HIV-1 Protein Interaction Identify Perturbed Host-Cellular Subsystems. PLoS Computational Biology, 6(7), e1000863. doi:10.1371/journal.pcbi.1000863Jenner, R. G., & Young, R. A. (2005). Insights into host responses against pathogens from transcriptional profiling. Nature Reviews Microbiology, 3(4), 281-294. doi:10.1038/nrmicro1126Andeweg, A. C., Haagmans, B. L., & Osterhaus, A. D. (2008). Virogenomics: the virus–host interaction revisited. Current Opinion in Microbiology, 11(5), 461-466. doi:10.1016/j.mib.2008.09.010Elena, S. F., Carrera, J., & Rodrigo, G. (2011). A systems biology approach to the evolution of plant–virus interactions. Current Opinion in Plant Biology, 14(4), 372-377. doi:10.1016/j.pbi.2011.03.013Tan, S.-L., Ganji, G., Paeper, B., Proll, S., & Katze, M. G. (2007). Systems biology and the host response to viral infection. Nature Biotechnology, 25(12), 1383-1389. doi:10.1038/nbt1207-1383De la Fuente, A. (2010). From ‘differential expression’ to ‘differential networking’ – identification of dysfunctional regulatory networks in diseases. Trends in Genetics, 26(7), 326-333. doi:10.1016/j.tig.2010.05.001Albert, R. (2005). Scale-free networks in cell biology. Journal of Cell Science, 118(21), 4947-4957. doi:10.1242/jcs.02714Yu, H., Braun, P., Yildirim, M. A., Lemmens, I., Venkatesan, K., Sahalie, J., … Vidal, M. (2008). High-Quality Binary Protein Interaction Map of the Yeast Interactome Network. Science, 322(5898), 104-110. doi:10.1126/science.1158684Barabási, A.-L., & Oltvai, Z. N. (2004). Network biology: understanding the cell’s functional organization. Nature Reviews Genetics, 5(2), 101-113. doi:10.1038/nrg1272Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378-382. doi:10.1038/35019019Mukhtar, M. S., Carvunis, A.-R., Dreze, M., Epple, P., Steinbrenner, J., … Moore, J. (2011). Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network. Science, 333(6042), 596-601. doi:10.1126/science.1203659Calderwood, M. A., Venkatesan, K., Xing, L., Chase, M. R., Vazquez, A., Holthaus, A. M., … Johannsen, E. (2007). Epstein-Barr virus and virus human protein interaction maps. Proceedings of the National Academy of Sciences, 104(18), 7606-7611. doi:10.1073/pnas.0702332104De Chassey, B., Navratil, V., Tafforeau, L., Hiet, M. S., Aublin‐Gex, A., Agaugué, S., … Lotteau, V. (2008). Hepatitis C virus infection protein network. Molecular Systems Biology, 4(1), 230. doi:10.1038/msb.2008.66Shapira, S. D., Gat-Viks, I., Shum, B. O. V., Dricot, A., de Grace, M. M., Wu, L., … Hacohen, N. (2009). A Physical and Regulatory Map of Host-Influenza Interactions Reveals Pathways in H1N1 Infection. Cell, 139(7), 1255-1267. doi:10.1016/j.cell.2009.12.018Dyer, M. D., Murali, T. M., & Sobral, B. W. (2008). The Landscape of Human Proteins Interacting with Viruses and Other Pathogens. PLoS Pathogens, 4(2), e32. doi:10.1371/journal.ppat.0040032Golem, S., & Culver, J. N. (2003). Tobacco mosaic virusInduced Alterations in the Gene Expression Profile ofArabidopsis thaliana. Molecular Plant-Microbe Interactions, 16(8), 681-688. doi:10.1094/mpmi.2003.16.8.681Espinoza, C., Medina, C., Somerville, S., & Arce-Johnson, P. (2007). Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. Journal of Experimental Botany, 58(12), 3197-3212. doi:10.1093/jxb/erm165Yang, C., Guo, R., Jie, F., Nettleton, D., Peng, J., Carr, T., … Whitham, S. A. (2007). Spatial Analysis ofArabidopsis thalianaGene Expression in Response toTurnip mosaic virusInfection. Molecular Plant-Microbe Interactions, 20(4), 358-370. doi:10.1094/mpmi-20-4-0358Agudelo-Romero, P., Carbonell, P., de la Iglesia, F., Carrera, J., Rodrigo, G., Jaramillo, A., … Elena, S. F. (2008). Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virology Journal, 5(1), 92. doi:10.1186/1743-422x-5-92Agudelo-Romero, P., Carbonell, P., Perez-Amador, M. A., & Elena, S. F. (2008). Virus Adaptation by Manipulation of Host’s Gene Expression. PLoS ONE, 3(6), e2397. doi:10.1371/journal.pone.0002397Ascencio-Ibáñez, J. T., Sozzani, R., Lee, T.-J., Chu, T.-M., Wolfinger, R. D., Cella, R., & Hanley-Bowdoin, L. (2008). Global Analysis of Arabidopsis Gene Expression Uncovers a Complex Array of Changes Impacting Pathogen Response and Cell Cycle during Geminivirus Infection. Plant Physiology, 148(1), 436-454. doi:10.1104/pp.108.121038Babu, M., Griffiths, J. S., Huang, T.-S., & Wang, A. (2008). Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMC Genomics, 9(1), 325. doi:10.1186/1471-2164-9-325De Vienne, D. M., Giraud, T., & Martin, O. C. (2007). A congruence index for testing topological similarity between trees. Bioinformatics, 23(23), 3119-3124. doi:10.1093/bioinformatics/btm500Wise, R. P., Moscou, M. J., Bogdanove, A. J., & Whitham, S. A. (2007). Transcript Profiling in Host–Pathogen Interactions. Annual Review of Phytopathology, 45(1), 329-369. doi:10.1146/annurev.phyto.45.011107.143944Handford, M. G., & Carr, J. P. (2007). A defect in carbohydrate metabolism ameliorates symptom severity in virus-infected Arabidopsis thaliana. Journal of General Virology, 88(1), 337-341. doi:10.1099/vir.0.82376-0Hou, B., Lim, E.-K., Higgins, G. S., & Bowles, D. J. (2004). N-Glucosylation of Cytokinins by Glycosyltransferases ofArabidopsis thaliana. Journal of Biological Chemistry, 279(46), 47822-47832. doi:10.1074/jbc.m409569200Schwender, J., Goffman, F., Ohlrogge, J. B., & Shachar-Hill, Y. (2004). Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature, 432(7018), 779-782. doi:10.1038/nature03145Pagán, I., Alonso-Blanco, C., & García-Arenal, F. (2008). Host Responses in Life-History Traits and Tolerance to Virus Infection in Arabidopsis thaliana. PLoS Pathogens, 4(8), e1000124. doi:10.1371/journal.ppat.1000124Carrera, J., Rodrigo, G., Jaramillo, A., & Elena, S. F. (2009). Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions. Genome Biology, 10(9), R96. doi:10.1186/gb-2009-10-9-r96Geisler-Lee, J., O’Toole, N., Ammar, R., Provart, N. J., Millar, A. H., & Geisler, M. (2007). A Predicted Interactome for Arabidopsis. Plant Physiology, 145(2), 317-329. doi:10.1104/pp.107.103465Ma, S., Gong, Q., & Bohnert, H. J. (2007). An Arabidopsis gene network based on the graphical Gaussian model. Genome Research, 17(11), 1614-1625. doi:10.1101/gr.6911207Yamada, T., & Bork, P. (2009). Evolution of biomolecular networks — lessons from metabolic and protein interactions. Nature Reviews Molecular Cell Biology, 10(11), 791-803. doi:10.1038/nrm2787Humphries, M. D., & Gurney, K. (2008). Network ‘Small-World-Ness’: A Quantitative Method for Determining Canonical Network Equivalence. PLoS ONE, 3(4), e0002051. doi:10.1371/journal.pone.0002051Stumpf, M. P. H., & Ingram, P. J. (2005). Probability models for degree distributions of protein interaction networks. Europhysics Letters (EPL), 71(1), 152-158. doi:10.1209/epl/i2004-10531-8Khanin, R., & Wit, E. (2006). How Scale-Free Are Biological Networks. Journal of Computational Biology, 13(3), 810-818. doi:10.1089/cmb.2006.13.810Daudin, J.-J., Picard, F., & Robin, S. (2007). A mixture model for random graphs. Statistics and Computing, 18(2), 173-183. doi:10.1007/s11222-007-9046-7Uetz, P. (2006). Herpesviral Protein Networks and Their Interaction with the Human Proteome. Science, 311(5758), 239-242. doi:10.1126/science.1116804Choi, I.-R., Stenger, D. C., & French, R. (2000). Multiple Interactions among Proteins Encoded by the Mite-Transmitted Wheat Streak Mosaic Tritimovirus. Virology, 267(2), 185-198. doi:10.1006/viro.1999.0117Guo, D., Saarma, M., Rajamäki, M.-L., & Valkonen, J. P. T. (2001). Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. Journal of General Virology, 82(4), 935-939. doi:10.1099/0022-1317-82-4-935Lin, L., Shi, Y., Luo, Z., Lu, Y., Zheng, H., Yan, F., … Wu, Y. (2009). Protein–protein interactions in two potyviruses using the yeast two-hybrid system. Virus Research, 142(1-2), 36-40. doi:10.1016/j.virusres.2009.01.006Shen, W., Wang, M., Yan, P., Gao, L., & Zhou, P. (2010). Protein interaction matrix of Papaya ringspot virus type P based on a yeast two-hybrid system. Acta Virologica, 54(1), 49-54. doi:10.4149/av_2010_01_49Redner, S. (2008). Teasing out the missing links. Nature, 453(7191), 47-48. doi:10.1038/453047aIrizarry, R. A. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4(2), 249-264. doi:10.1093/biostatistics/4.2.249Smyth, G. K. (2004). Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Statistical Applications in Genetics and Molecular Biology, 3(1), 1-25. doi:10.2202/1544-6115.1027Allemeersch, J., Durinck, S., Vanderhaeghen, R., Alard, P., Maes, R., Seeuws, K., … Kuiper, M. T. R. (2005). Benchmarking the CATMA Microarray. A Novel Tool forArabidopsis Transcriptome Analysis. Plant Physiology, 137(2), 588-601. doi:10.1104/pp.104.051300Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association, 74(368), 829-836. doi:10.1080/01621459.1979.10481038Tarraga, J., Medina, I., Carbonell, J., Huerta-Cepas, J., Minguez, P., Alloza, E., … Dopazo, J. (2008). GEPAS, a web-based tool for microarray data analysis and interpretation. Nucleic Acids Research, 36(Web Server), W308-W314. doi:10.1093/nar/gkn303Al-Shahrour, F., Minguez, P., Vaquerizas, J. M., Conde, L., & Dopazo, J. (2005). BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acids Research, 33(Web Server), W460-W464. doi:10.1093/nar/gki456Al-Shahrour, F., Minguez, P., Tárraga, J., Medina, I., Alloza, E., Montaner, D., & Dopazo, J. (2007). FatiGO +: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Research, 35(suppl_2), W91-W96. doi:10.1093/nar/gkm260Mueller, L. A., Zhang, P., & Rhee, S. Y. (2003). AraCyc: A Biochemical Pathway Database for Arabidopsis. Plant Physiology, 132(2), 453-460. doi:10.1104/pp.102.017236Navratil, V., de Chassey, B., Combe, C., & Lotteau, V. (2011). When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases. BMC Systems Biology, 5(1), 13. doi:10.1186/1752-0509-5-13Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.