142 research outputs found

    Spatial modulation of dark versus bright stimulus responses in the mouse visual system

    Get PDF
    A fundamental task of the visual system is to respond to both increases and decreases of luminance with action potentials (ON and OFF responses1–4). OFF responses are stronger, faster, and more salient than ON responses in primary visual cortex (V1) of both cats5,6 and primates,7,8 but in ferrets9 and mice,10 ON responses can be stronger, weaker,11 or balanced12 in comparison to OFF responses. These discrepancies could arise from differences in species, experimental techniques, or stimulus properties, particularly retinotopic location in the visual field, as has been speculated;9 however, the role of retinotopy for ON/OFF dominance has not been systematically tested across multiple scales of neural activity within species. Here, we measured OFF versus ON responses across large portions of visual space with silicon probe and whole-cell patch-clamp recordings in mouse V1 and lateral geniculate nucleus (LGN). We found that OFF responses dominated in the central visual field, whereas ON and OFF responses were more balanced in the periphery. These findings were consistent across local field potential (LFP), spikes, and subthreshold membrane potential in V1, and were aligned with spatial biases in ON and OFF responses in LGN. Our findings reveal that retinotopy may provide a common organizing principle for spatial modulation of OFF versus ON processing in mammalian visual systems

    A dual fluorescent multiprobe assay for prion protein genotyping in sheep

    Get PDF
    BACKGROUND: Scrapie and BSE belong to a group of fatal, transmissible, neurodegenerative diseases called TSE. In order to minimize the risk of natural scrapie and presumed natural BSE in sheep, breeding programmes towards TSE resistance are conducted in many countries based on resistance rendering PRNP polymorphisms at codons 136 (A/V), 154 (R/H) and 171 (R/H/Q). Therefore, a reliable, fast and cost-effective method for routine PRNP genotyping in sheep, applicable in standard equipped molecular genetic laboratories, will be a vital instrument to fulfill the need of genotyping hundreds or thousands of sheep. METHODS: A dual fluorescent multiprobe assay consisting of 2 closed tube PCR reactions containing respectively 4 and 3 dual-labelled fluorescent ASO probes for the detection in real-time of the 7 allelic variants of sheep PRNP mentioned above. RESULTS: The assay is succesfully performed using unpurified DNA as a template for PCR, without any post-PCR manipulations and with semi-automatic determination of the PRNP genotypes. The performance of the assay was confirmed via PCR-RFLP and sequencing in a cross-validation study with 50 sheep. CONCLUSIONS: We report the development and validation of a robust, reliable and reproducible method for PRNP genotyping of a few to many sheep samples in a fast, simple and cost-effective way, applicable in standard equipped molecular genetic laboratories. The described primer/probe design strategy can also be applied for the detection of other polymorphisms or disease causing mutations

    Molecular cloning and characterization of the porcine prostaglandin transporter (SLCO2A1): evaluation of its role in F4 mediated neonatal diarrhoea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because prostaglandins are involved in many (patho)physiological processes, <it>SLCO2A1 </it>was already characterized in several species in an attempt to unravel specific processes/deficiencies. Here, we describe the molecular cloning and characterization of the porcine ortholog in order to evaluate its possible involvement in F4 enterotoxigenic <it>E. coli </it>mediated neonatal diarrhoea, based on a positional candidate gene approach study.</p> <p>Results</p> <p>Porcine <it>SLCO2A1 </it>is organized in 14 exons, containing an open reading frame of 1935 bp, encoding a 12-transmembrane organic anion cell surface transporter of 644 aa. The -388 to -5 upstream region comprises a (CpG)<sub>48 </sub>island containing a number of conserved promoter elements, including a TATA box. A potential alternative promoter region was found in the conserved -973 to -700 upstream region. No consensus polyadenylation signal was discovered in the 3' UTR. Repeat sequences were found in 15% of all the non coding sequences.</p> <p>As expected for a multifunctional protein, a wide tissue distribution was observed. mRNA expression was found in the adrenal gland, bladder, caecum, colon (centripetal coil/centrifugal coil), diaphragm, duodenum, gallbladder, heart, ileum, jejunum, kidney, liver, longissimus dorsi muscle, lung, lymph node, mesenterium, rectum, spleen, stomach, tongue and ureter, but not in the aorta, oesophagus and pancreas.</p> <p>The promoter region and the exons (including the splice sites) of <it>SLCO2A1 </it>were resequenced in 5 F4ab/ac receptor positive and 5 F4ab/ac receptor negative pigs. Two silent and 2 missense (both S → L at position 360 and 633) mutations were found, but none was associated with the F4ab/ac receptor phenotype. In addition, no phenotype associated differential mRNA expression or alternative/abberant splicing/polyadenylation was found in the jejunum.</p> <p>Conclusion</p> <p>The molecular cloning and characterization of porcine <it>SLCO2A1 </it>not only contributes to the already existing knowledge about the transporter in general, but enables studies on porcine prostaglandin related processes/deficiencies as patient and/or model. Here we examined its possible involvement as receptor in F4 enterotoxigenic <it>E. coli </it>mediated neonatal diarrhoea. Because no phenotype associated differences could be found in the gene sequence nor in its jejunal transcription profile of F4ab/ac receptor positive/negative pigs, SLCO2A1 can most likely be excluded as receptor for F4 bacteria.</p

    Isolated and Syndromic Retinal Dystrophy Caused by Biallelic Mutations in RCBTB1, a Gene Implicated in Ubiquitination.

    Get PDF
    Inherited retinal dystrophies (iRDs) are a group of genetically and clinically heterogeneous conditions resulting from mutations in over 250 genes. Here, homozygosity mapping and whole-exome sequencing (WES) in a consanguineous family revealed a homozygous missense mutation, c.973C&gt;T (p.His325Tyr), in RCBTB1. In affected individuals, it was found to segregate with retinitis pigmentosa (RP), goiter, primary ovarian insufficiency, and mild intellectual disability. Subsequent analysis of WES data in different cohorts uncovered four additional homozygous missense mutations in five unrelated families in whom iRD segregates with or without syndromic features. Ocular phenotypes ranged from typical RP starting in the second decade to chorioretinal dystrophy with a later age of onset. The five missense mutations affect highly conserved residues either in the sixth repeat of the RCC1 domain or in the BTB1 domain. A founder haplotype was identified for mutation c.919G&gt;A (p.Val307Met), occurring in two families of Mediterranean origin. We showed ubiquitous mRNA expression of RCBTB1 and demonstrated predominant RCBTB1 localization in human inner retina. RCBTB1 was very recently shown to be involved in ubiquitination, more specifically as a CUL3 substrate adaptor. Therefore, the effect on different components of the CUL3 and NFE2L2 (NRF2) pathway was assessed in affected individuals' lymphocytes, revealing decreased mRNA expression of NFE2L2 and several NFE2L2 target genes. In conclusion, our study puts forward mutations in RCBTB1 as a cause of autosomal-recessive non-syndromic and syndromic iRD. Finally, our data support a role for impaired ubiquitination in the pathogenetic mechanism of RCBTB1 mutations

    Chemokine Binding Protein M3 of Murine Gammaherpesvirus 68 Modulates the Host Response to Infection in a Natural Host

    Get PDF
    Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an attractive model of γ-herpesvirus infection. Surprisingly, however, ablation of expression of MHV-68 M3, a secreted protein with broad chemokine-binding properties in vitro, has no discernable effect during experimental infection via the respiratory tract. Here we demonstrate that M3 indeed contributes significantly to MHV-68 infection, but only in the context of a natural host, the wood mouse (Apodemus sylvaticus). Specifically, M3 was essential for two features unique to the wood mouse: virus-dependent inducible bronchus-associated lymphoid tissue (iBALT) in the lung and highly organized secondary follicles in the spleen, both predominant sites of latency in these organs. Consequently, lack of M3 resulted in substantially reduced latency in the spleen and lung. In the absence of M3, splenic germinal centers appeared as previously described for MHV-68-infected laboratory strains of mice, further evidence that M3 is not fully functional in the established model host. Finally, analyses of M3's influence on chemokine and cytokine levels within the lungs of infected wood mice were consistent with the known chemokine-binding profile of M3, and revealed additional influences that provide further insight into its role in MHV-68 biology

    The novel homozygous KCNJ10 c.986T>C (p.(Leu329Pro)) variant is pathogenic for the SeSAME/EAST homologue in Malinois dogs.

    Get PDF
    SeSAME/EAST syndrome is a multisystemic disorder in humans, characterised by seizures, sensorineural deafness, ataxia, developmental delay and electrolyte imbalance. It is exclusively caused by homozygous or compound heterozygous variations in the KCNJ10 gene. Here we describe a similar syndrome in two families belonging to the Malinois dog breed, based on clinical, neurological, electrodiagnostic and histopathological examination. Genetic analysis detected a novel pathogenic KCNJ10 c.986T>C (p.(Leu329Pro)) variant that is inherited in an autosomal recessive way. This variant has an allele frequency of 2.9% in the Belgian Malinois population, but is not found in closely related dog breeds or in dog breeds where similar symptoms have been already described. The canine phenotype is remarkably similar to humans, including ataxia and seizures. In addition, in half of the dogs clinical and electrophysiological signs of neuromyotonia were observed. Because there is currently no cure and treatment is nonspecific and unsatisfactory, this canine translational model could be used for further elucidating the genotype/phenotype correlation of this monogenic multisystem disorder and as an excellent intermediate step for drug safety testing and efficacy evaluations before initiating human studies
    corecore