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Abstract. Rarita-Schwinger operators in Clifford analysis can be realized as first-order dif-
ferential operators acting on functions f(x;u) taking values in the vector space of monogenic
polynomials Mk(Rm), where k ∈ N is fixed. In this paper, the Scasimir operator for the
Lie superalgebra osp(1|2) will be used to construct an invariant operator which acts on the
full space of functions in two vector variables and therefore has more invariance properties.
Also the fundamental solution for this operator will be constructed.
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1 Introduction

Classical Clifford analysis is usually defined as a function theory generalizing complex analysis
to the case of arbitrary dimension m ∈ N (considered as a formal parameter), and at the same
time refining classical harmonic analysis in Rm. Indeed, a well-known realization for the Lie
algebra sl(2) in terms of (scalar) operators on Rm is given by

sl(2) ∼= Alg
{
−1

2
∆x,

1
2
|x|2,Ex +

m

2

}
, (1)

where ∆x denotes the Laplace operator, |x|2 =
∑

j x
2
j and Ex is the Euler operator measuring

the degree of homogeneity in (x1, · · · , xm). In Clifford analysis, one adds the vector variable x
and the Dirac operator ∂x, the latter being the unique (up to a constant) conformally invariant
differential operator acting on spinor-valued (or Clifford algebra-valued) functions. This then
leads to an operator realization for the Lie superalgebra

osp(1|2) ∼= Alg

{
i
√

2
2
x,−i

√
2

2
∂x

}
,

whose even part is the Lie algebra sl(2). The constants are hereby choosen in such a way that one
obtains the classical (anti-)commutation relations, for which we refer to [12]. This Dirac operator
∂x, generalizing the Cauchy-Riemann operator in complex analysis and factorizing the Laplacian
∆x, is the main object of study in classical Clifford analysis. We refer the reader to [3, 8, 13] or
to the overview paper [7] for a general introduction to this branch of classical analysis. Since a
few years, Clifford analysis turned out to be an elegant framework to study function theoretical
problems not only for the classical Dirac operator acting on spinor-valued functions, but also
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for far-reaching generalizations of it, acting on functions which take their values in arbitrary
half-integer irreducible spin-representations. The earliest results involved generalizations of the
Rarita-Schwinger operator (k = 1), again inspired by equations coming from theoretical physics:
in a series of papers [4, 5, 17], one can find a collection of function theoretical fundaments for
these operators acting on functions taking values in irreducible modules with highest weight
(k + 1

2 ,
1
2 , · · · ,

1
2), with k ∈ N. These modules are then realized as spaces of homogeneous

polynomial solutions for the Dirac operator ∂u in a dummy variable u ∈ Rm. In this paper, we
will show how one can use the Scasimir operator, see [2, 12], to construct an invariant operator
Rs acting on the full space of polynomials in the dummy variable. This operator will thus satisfy
additional symmetry properties.
The paper is organized as follows. After an introduction to Clifford analysis in section 2, we will
introduce in section 3 and 4 the Scasimir operator Sc1 and corresponding Hilbert operator H for
osp(1|2). The Hilbert operator H plays a fundamental role in defining the total Rarita-Schwinger
operator R and total twistor operator T . These operators incorporate the infinite number
(k ∈ N) of fundamental operators defined in [4, 5, 16] into two basic operators, thus leading
to a more unified and algebraically more transparent approach (section 5, 6). A particular
rescaling of the total Rarita-Schwinger operator R leads to the construction of the so-called
rescaled total Rarita-Schwinger operator Rs which commutes with the full algebra osp(1|2) and
hence enjoys more invariance properties than the classical operators (section 7). Its behaviour
under the action of the conformal group and a construction of the fundamental solution based
on Riesz potentials will be discussed in section 8 and 9. In the last section we derive an integral
representation for the Hilbert operator H.
Finally, the technique of using Scasimir operators to construct higher spin Dirac operators can
be done for more general cases than the one that will be treated in the present paper. We will
elaborate this in an upcoming paper.

2 Clifford Analysis

Let (e1, . . . , em) be an orthonormal basis for the Euclidean vector space Rm, and denote by Rm

the real Clifford algebra generated by these basis elements together with the defining relations
eiej + ejei = −2δij (i, j = 1, . . . ,m). The complex Clifford algebra Cm is then defined as
Cm := Rm ⊗R C. Any element x of Rm can be embedded inside this Clifford algebra, by means
of x ↪→

∑
ejxj . The classical inner and outer (wedge) product of two vectors x, y ∈ Rm can

then be defined in terms of the Clifford product:

〈x, y〉 := −1
2
(
xy + yx

)
and x ∧ y :=

1
2
(
xy − yx

)
.

Inside the complex Clifford algebra Cm, one can realize the spinor space(s) S± as a minimal
left ideal, using a primitive idempotent. Note that the parity of spinors only needs to be taken
into account in case of even dimensions m = 2n (in odd dimensions m = 2n + 1, it suffices to
disregard the ±). The vector space(s) S± define(s) the basic half-integer representation(s) for
the spin group Spin(m), described by the highest weight (1

2 ,
1
2 , · · · ,±

1
2) under the multiplicative

left action ψ 7→ sψ for all ψ ∈ S and s ∈ Spin(m). Note that the spin group itself can also be
realized inside the Clifford algebra:

Spin(m) =
{
s =

2k∏
j=1

sj : k ∈ N , sj ∈ Sm−1

}
,

where Sm−1 ⊂ Rm denotes the unit sphere. The classical Dirac operator in Rm is then given
by ∂x =

∑
j ej∂xj . This is the unique, conformally invariant first order differential operator
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acting on S±-valued functions f(x) on Rm. Note that whereas this operator maps ψ(x) in S±
to ∂xψ(x) ∈ S∓, in Clifford analysis one often considers functions taking values in the whole
Clifford algebra Cm, which can be seen as a direct sum of several equivalent irreducible spinor
representations. As this does not affect the function theoretical result under consideration, we
will often consider functions f(x) taking values in the space V , which may then stand for either
the spinor space(s) or the whole Clifford algebra. A V -valued function f is called monogenic
in x if it satisfies the equation ∂xf = 0. Since ∂2

x = −4x, monogenic functions on Rm are
a refinement of harmonic functions. We fix the following notations: the space of V -valued
polynomials in Rm is denoted by P(Rm, V ) and

H(Rm, V ) = {P (x) ∈ P(Rm, V ) : 4xP (x) = 0}
M(Rm, V ) = {P (x) ∈ P(Rm, V ) : ∂xP (x) = 0} .

The corresponding subspaces of k-homogeneous polynomials are denoted by means of an extra
subscript k. The spacesMk(Rm, V ) and Hk(Rm, V ) are known as the spaces of (inner) spherical
monogenics and harmonics of order k which are of major importance in harmonic analysis related
to SO(m) or its double cover Spin(m). Not only the spinor space(s) S±, but also other half-
integer Spin(m)-representations can be characterized using the language of Clifford algebras and
Clifford analysis, see e.g. [6]. For our purposes, it suffices to note that the space Mk(Rm, S±)
in a dummy variable u ∈ Rm defines a model for the irreducible Spin(m)-representation with
highest weight (k+ 1

2 ,
1
2 , · · · ,

1
2 ,±

1
2), under the left regular representation (or L-representation)

L(s)P (u) := sP (sus), s ∈ Spin(m) . Hereby, ·̄ denotes the Clifford conjugation which is the anti-
involution determined by ēi = −ei. Also here, we will often speak about the spacesMk(Rm, V )
which reduce to a direct sum of equivalent modules in case V = Cm.
The Γ-operator in Clifford analysis is traditionally introduced as follows: let (r, ω) ∈ R+×Sm−1

be spherical coordinates on Rm . The Dirac operator can be expressed as ∂x = ω(∂r + 1
rΓx)

where the angular operator Γx is the bivector-valued differential operator given by

Γx := −
∑
i<j

eij
(
xi∂xj − xj∂xi

)
= −

∑
i<j

eijLij .

The (axial momentum) operators Lij := xi∂xj − xj∂xi are the usual generators of the Lie
algebra so(m) obtained by deriving the left regular representation h(s)P (u) := P (sus), for all
s ∈ Spin(m) .
As was mentioned in the introduction, the Dirac operator ∂x and the vector variable x generate
the Lie superalgebra osp(1|2), which is a concise way to summarize the most crucial operator
identities in Clifford analysis. Apart from its geometric significance as a Dirac-type operator on
the sphere, Γx appears also in a slightly different form as a certain element of U(osp(1|2)); a
simple computation shows that Γx can be expressed as

Γx =
1
2

([x, ∂x] +m) = −Ex − x∂x .

Precisely these type of identities reveal a close relationship between Γx and a rather special
uniquely defined element of U(osp(1|2)), the so-called Scasimir operator Sc1 of osp(1|2), which
will be introduced in the next section.

3 The Scasimir operator Sc1 for osp(1|2)

In [2], the authors introduced the Scasimir operator for the algebra osp(1|2p). As opposed to the
Casimir operator C2(L) for osp(1|2p), the operator Scp anti -commutes with the odd generators
(and hence commutes with all the even generators). Its square Sc2

p commutes with the odd
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generators, which means that the Scasimir operator Scp can be interpreted as a “square root”
of a Casimir operator. In case of one vector variable (p = 1), this operator is explicitly given
(in our polynomial model) by a shift of the anti-commutator of the odd generators (from now
on in the dummy variable u ∈ Rm):

Sc1 :=
1
2

(u∂u − ∂uu)− 1
2

=
m− 1

2
− Γu ∈ U(osp(1|2)) .

Using the defining relations for osp(1|2), one can easily verify by explicit calculations that the
relations {Sc1, u} = {Sc1, ∂u} = 0 hold. The Casimir operators of the h and L-representation
can then be expressed as polynomials in Γu (see [8]):

C2(h) :=
∑
i<j

L2
ij = Γu(m− 2− Γu)

C2(L) :=
∑
i<j

(Lij −
1
2
eij)2 = Γu(m− 1− Γu)− m(m− 1)

8
.

The Casimir operator C2(L) is thus related to the Scasimir operator Sc1:

C2(L) = −Sc2
1 +

(m− 1)(m− 2)
8

.

The Casimir operator C2(h) is also known in literature as the Laplace-Beltrami operator on the
unit sphere Sm−1 . The action of Sc1 on P(Rm, V ) is most easily understood in terms of the
monogenic Fischer decomposition of spinor-valued polynomials. First of all, the classical Howe
duality for SO(m)× sl(2) tells us that

P(Rm,C) =
⊕
k≥0

V∞k ⊗Hk(Rm,C) ,

where V∞k denotes a lowest-weight (infinite-dimensional) irreducible Verma module for the Lie
algebra sl(2). Making use of the Fischer decomposition for V -valued harmonic polynomials into
monogenics, given by

Hk(Rm, V ) =Mk(Rm, V )⊕ (1− δk,0)uMk−1(Rm, V ) , (2)

we can refine this result to

P(Rm, V ) =
⊕
k≥0

V∞k ⊗
(
Mk(Rm, V )⊕ (1− δk,0)uMk−1(Rm, V )

)

=
⊕
k≥0

(
V∞k ⊕ uV∞k+1

)
⊗Mk(Rm, V )

=
⊕
k≥0

W∞k ⊗Mk(Rm, V ) . (3)

Here, W∞k denotes a lowest-weight (infinite-dimensional) irreducible Verma module for the Lie
superalgebra osp(1|2). Note that (3) corresponds to the decomposition of P(Rm, V ) under the
Howe dual pair Spin(m) × osp(1|2). This is the symmetry behind the full monogenic Fischer
decomposition, a result which is of fundamental importance in Clifford analysis of functions of
one vector variable. The operator Sc1 anti-commutes with u and ∂u, hence its eigenvalue-analysis
on P(Rm, V ) is reduced to:

Mk uMk

Sc1 +
(
k + m−1

2

)
−
(
k + m−1

2

) .
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4 The Hilbert operator H of osp(1|2)

The square of the Scasimir operator being a positive operator, we can also define its square root
|Sc1|. Its definition easily follows from the spectral decomposition of Sc2

1, where † denotes the
adjoint for the Fischer inner product (cf. infra, definition 7):

|Sc1| := (Sc1Sc
†
1)

1
2 = (Sc2

1)
1
2 .

The operator |Sc1|, which will also commute with all the osp(1|2)-generators, can now be used
to define a Hilbert-type operator H on P(Rm, V ):

Definition 1.

H :=
Sc1

|Sc1|
=

m− 1− 2Γu
|m− 1− 2Γu|

= sgn(Sc1) . (4)

Inspection of its eigenvalues shows that the operator |Sc1| is invertible. The notation division
by |Sc1| is to be understood as multiplication with |Sc1|−1 (left or right multiplication yields
the same result). We attribute the name Hilbert to this operator because H can be seen as
a canonical extension of the spherical Hilbert operator HS which is traditionally defined and
studied within the framework of square integrable functions on the sphere, see e.g. [8]:

Definition 2. The operator HS is defined on L2(Sm−1) by means of

(HSf)(ω) :=
1
Am

PV
∫
Sm−1

1 + ωξ

|1 + ωξ|m
f(ξ)dξ ,

where ‘PV ’ refers to the principal value of the singular integral operator under consideration.

The operator HS has eigenvalues ±1 and the corresponding eigenspaces are the spaces of inner
and outer spherical monogenics: HS [M] = M and HS [ξM] = −ωM. Initially, HS is defined
on the subspace H(Rm, V ), with

M(Rm, V )⊕ ξM(Rm, V ) = H(Rm, V ) ⊂ P(Rm, V ) .

If one considers P(Rm, V ) as an SO(m) × sl(2)-module, it is clear that H, as defined in (4), is
precisely the sl(2)-invariant extension of HS to P(Rm, V ). However, the symmetry properties of
the H-operator are better understood by regarding P(Rm, V ) as a Spin(m)× osp(1|2)-module.
For this action, H is the unique operator which acts like the identity on the direct sumM(Rm, V )
of all lowest weight modules and (super-)commutes with the osp(1|2)-factor:

{H,u} = {H, ∂u} = [H, |u|2] = [H,∆u] = [H,Eu +
m

2
] = 0 .

At the end of the paper we will give an integral representation of H. Note that there also exists
an alternative definition for this Hilbert operator H in terms of a shifted Scasimir operator P1

defined as

P1 := Sc1 −
1
2

=
m− 2

2
− Γu .

This operator commutes with the even part sl(2) ∼=
{

∆u, |u|2,Eu + m
2

}
of osp(1|2) and appears

naturally as the operator in U(osp(1|2)) for which

P 2
1 = −C2(h) +

(
m− 2

2

)2

. (5)
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This relation shows that the operator P1 (opposed to Sc1) behaves better on V -valued spherical
harmonics Hk(Rm, V ) of order k, as can be seen from its eigenvalues (remark the shift k → k−1
in the second part):

Mk uMk−1

P1 +
(
k + m−2

2

)
−
(
k + m−2

2

)
Whereas this operator P1 does not anti-commute with the odd generators, its square P 2

1 is a
positive operator commuting with the even generators. We can therefore again define a square
root operator of P 2

1 , denoted by means of |P1|, which also commutes with the even generators.
Despite the fact that neither P1 nor its absolute value |P1| anti-commute with the odd generators
of osp(1|2), their quotient still behaves in a nice way. As a matter of fact, H can be represented
alternatively as follows:

Proposition 1.

H = sgn(Sc1) = sgn(P1) =
P1

|P1|
=

m− 2− 2Γu
|m− 2− 2Γu|

.

Proof. Since both sgn(Sc1) and sgn(P1) commute with the even generators of osp(1|2), it is
enough to verify this statement on V -valued harmonics. It then suffices to note that the operators
Sc1, |Sc1|, P1, |P1| acts diagonally on each of the summands in (2). �

5 The total Rarita-Schwinger and twistor operator

Recall that H (as the signum operator of the Scasimir) defines an involution on P(Rm, V ) .
Accordingly we can define a Spin(m)-invariant Z2-grading:

P(Rm, V ) = P0(Rm, V )⊕ P1(Rm, V ) .

Hereby the (even) 0-part and the (odd) 1-part are identified with respectively the (+1) and
(−1)-eigenspaces of H:

P0(Rm, V ) =
⊕
l≥0

|u|2lM(Rm, V ) and P1(Rm, V ) =
⊕
l≥0

u2l+1M(Rm, V ) .

Let a ∈ Cm be a (constant) Clifford number which acts by left multiplication on f ∈ P(Rm, V ) .
Consider the decomposition af = π̌0(a)f + π̌1(a)f where the projections on the even and odd
part are given by

π̌0(a)f :=
1
2

(a+HaH)f and π̌1(a)f :=
1
2

(a−HaH)f .

Clearly the operator H commutes with π̌0(a) and anti-commutes with π̌1(a) . If we now consider
the Z2-grading on P(Rm, V ) defined by H, then π̌0(a) and π̌1(a) are the even and odd part of
the operator defined by a ∈ End (P(Rm, V )).
Instead of working with polynomials f(x;u) ∈ P(Rm,Mk) or P(Rm,M) we will from now on
often consider f(x;u) ∈ P(Rm,C) ⊗ P(Rm, V ), which we will identify with P(R2×m, V ). The
asymmetry in the notation f(x;u) then emphasizes the difference between the domain variable
x and the dummy variable u which is used to describe the values of the map x 7→ f(x;u). The
decomposition of the action of the Dirac operator ∂x on f(x;u) in P(R2×m, V ) in its even and
odd part then leads to the following:
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Definition 3. The total Rarita-Schwinger operator R is defined to be the even operator π̌0(∂x) :

R :=
1
2

(∂x +H∂xH) .

The total twistor operator T is defined to be the odd operator π̌1(∂x) :

T :=
1
2

(∂x −H∂xH) ,

where both operators are considered as endomorphisms on P(R2×m, V ) .

Proposition 2. The total RS- and twistor operator, considered as endomorphisms on P(R2×m, V ),
can be expressed as

R =
1

2P1

{
P1, ∂x

}
=

1
2(m− 2− 2Γu)

{
m− 2− 2Γu, ∂x

}
T =

1
2P1

[
P1, ∂x

]
=

1
2(m− 2− 2Γu)

[
m− 2− 2Γu, ∂x

]
,

and both operators commute with the even part sl(2) ∼=
{

∆u, |u|2,Eu + m
2

}
of osp(1|2) .

Proof. Recalling the alternative definition of the Hilbert operator

H =
P1

|P1|
=

m− 2− 2Γu
|m− 2− 2Γu|

,

the first statement follows by substituting this expression into definition 3 and observing that
|P1| commutes with ∂x . Note that this heavily relies on the definition of H in terms of P1.
Indeed, since P 2

1 is a scalar-valued element of U(osp(1|2)), it is clear that
[
P 2

1 , ∂x
]

= 0 and this
ensures that

[
|P1|, ∂x

]
= 0 . The second property follows from the fact that both P1 and ∂x

commute with sl(2). �

6 Operators on P(Rm,Mk) and P(Rm, uMk−1)

The construction of the (generalized) Rarita-Schwinger operator Rk, see e.g. [4, 5, 16], is based
on the notion of monogenic operators. This relies on the following property: for any a ∈ Cm and
Pk ∈Mk(Rm, V ), we have that aPk ∈ Hk(Rm, V ). Using the Fischer decomposition of spherical
harmonics into spherical monogenics, we then get:

aPk(u) =
(
k +m− 2− Γu

2k +m− 2

)
aPk(u) +

(
k + Γu

2k +m− 2

)
aPk(u) .

In this way the decomposition of the left multiplication operator a :Mk(Rm, V )→ Hk(Rm, V ) :
Pk 7→ aPk as the sum of two (monogenic) operators is obtained. In case a = ∂x, these operators
are usually referred to as the (generalized) Rarita-Schwinger operator Rk and dual twistor
operator Tk∗ . Together with the decomposition of the left multiplication operator a acting on
uPk−1(u), one obtains four operators Rk,Dk−1, Tk, Tk∗which admit a simple form in terms of
the Hilbert operator H:

1. The Rarita-Schwinger operator Rk : P(Rm,Mk)→ P(Rm,Mk)

Rkf(x;u) =
(
k +m− 2− Γu

2k +m− 2

)
∂xf(x;u)

=
1
2
(
1 +H

)
∂xf(x;u) , f(x;u) ∈ P(Rm,Mk) .
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2. The equivalent operator Dk−1 : P(Rm, uMk−1)→ P(Rm, uMk−1)

Dk−1uf(x;u) =
(

k + Γu
2k +m− 2

)
∂xuf(x;u)

=
1
2
(
1−H

)
∂xuf(x;u) , f(x;u) ∈ P(Rm,Mk−1) .

3. The twistor operator Tk : P(Rm, uMk−1)→ P(Rm,Mk)

Tkuf(x;u) =
(
k +m− 2− Γu

2k +m− 2

)
∂xuf(x;u)

=
1
2
(
1−H

)
∂xuf(x;u) , f(x;u) ∈ P(Rm,Mk−1) .

4. The dual twistor operator Tk∗ : P(Rm,Mk)→ P(Rm, uMk−1)

Tk∗f(x;u) =
(

k + Γu
2k +m− 2

)
∂xf(x;u)

=
1
2
(
1 +H

)
∂xf(x;u) , f(x;u) ∈ P(Rm,Mk) .

These operators are the entries of the following block form representation of the Dirac operator:

∂x : P(Rm,Hk)→ P(Rm,Hk) : ∂x ←→
(
Rk Tk
Tk∗ Dk−1

)
.

Proposition 3. The operators R and T can be restricted to the subspaces P(Rm,Mk) and
P(Rm, uMk). Their restrictions are precisely the four fundamental operators

R
∣∣
P(Rm,Mk)

= Rk R
∣∣
P(Rm,uMk)

= Dk−1

T
∣∣
P(Rm,Mk)

= Tk T
∣∣
P(Rm,uMk)

= Tk∗ .

Proof. This follows immediately from the H-form of the four operators. �

Since R and T commute with the even part sl(2) ∼=
{

∆u, |u|2,Eu + m
2

}
of osp(1|2), it is enough

to consider their action on the space of polynomials P(Rm,H) taking values in the sl(2)-lowest
weight module H(Rm, V ), which decomposes as M(Rm, V )⊕ uM(Rm, V ):

R
∣∣
P(Rm,M)

= ⊕k≥0Rk R
∣∣
P(Rm,uM)

= ⊕k≥0Dk
T
∣∣
P(Rm,M)

= ⊕k≥0Tk T
∣∣
P(Rm,uM)

= ⊕k≥0Tk∗ .

7 The total rescaled Rarita-Schwinger and twistor operator

Due to the appearance of the integral operator P−1
1 in the definition of the total RS- and twistor

operator (see proposition 2), these operators lack the property of being differential operators on
P(R2×m, V ) . This motivates us to rescale them in the following way.

Definition 4. The total rescaled RS and twistor operator on P(R2×m, V ) are defined as

Rs := P1R =
1
2
{
P1, ∂x

}
=

1
2
{
m− 2− 2Γu, ∂x

}
Ts := P1T =

1
2
[
P1, ∂x

]
=

1
2
[
m− 2− 2Γu, ∂x

]
.
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Due to this rescaling, Rs and Ts are differential operators which can be expressed in the algebra
generated by u, ∂u and ∂x . Although the operator Rs is no longer realized as the action of
∂x followed by a projection, there is a good reason to consider this rescaled operator. Recall
that the unscaled R is already sl(2)-invariant. It turns out that the rescaled operator Rs has
enhanced invariance properties. First of all we need the following:

Lemma 1. Let a ∈ C1
m be an arbitrary vector. The operator defined by the anti-commutator

{a, P1} : P(Rm, V )→ P(Rm, V ) : f(u) 7→ {a, P1}f(u)

commutes with the generators u, ∂u of the Lie superalgebra osp(1|2).

Proof. It is sufficient to prove the statement for a fixed (unit) vector e1 ∈ Rm. Consider
the splitting Rm = Re1 ⊕ e⊥1

∼= Re1 ⊕ Rm−1 . Then u = e1u1 + u and ∂u = e1∂u1 + ∂u .
Using the definition of Γu (on Rm) and denoting the Gamma-operator on Rm−1 by means of
Γ′u = −

∑
1<i<j eijLij we obtain:

{e1, P1} =
{
e1,

m− 2
2
− Γu

}
= (m− 2)e1 +

{
e1,
∑
1<i

e1iL1i − Γ′u

}
= (m− 2)e1 − 2e1Γ′u = 2e1Sc

′
1 ,

where Sc′1 denotes the Scasimir operator on Rm−1 . In this way Sc′1 can be regarded as the
Scasimir of the osp(1|2)-Lie superalgebra generated by u, ∂u and therefore anti-commutes with
u, ∂u. Clearly e1u1 commutes with both e1 and Sc′1 while u anti-commutes with both e1 and
Sc′1. The same is true for ∂u, from which it follows that {e1, P1} commutes with the generators
u and ∂u of osp(1|2). �

Lemma 2. Let B and P be operators such that P 2 commutes with B , then {P,B} commutes
with P while [P,B] anti-commutes with P . If moreover B2 commutes with P , then also {P,B}
commutes with [P,B].

Proof. Follows from easy calculations. �

This leads to the following conclusions:

Proposition 4.

1. The rescaled operator Rs commutes with the generators u, ∂u of osp(1|2).

2. The rescaled operator Ts only commutes with the even part sl(2) of osp(1|2).

3. We have that
[
Rs, Ts

]
=
[
Rs, P1

]
=
{
Ts, P1

}
= 0 .

Proof. Take a to be the Dirac operator ∂x (which behaves like a vector) in lemma 1. This
proves the enhanced invariance property for Rs . The invariance of Ts follows immediately from
proposition 2. If we take B = ∂x and P = P1, the conditions of lemma 2 are satisfied. This
implies the third statement. �

The operators Rs and Ts are still considered to be examples of even (resp. odd) operators. This
follows from the (anti-)commutation relations with respect to P1 : an operator (anti-)commuting
with P1 is even (odd). This notion of even and odd is exactly the same as the grading induced
by the Hilbert operator H. Consider then for fixed x the decomposition of polynomials f(x;u)
under the Howe dual pair Spin(m)× osp(1|2) acting on the u-variable:

P
(
Rm, V ) =

⊕
k≥0

W∞k ⊗Mk(Rm, V ) .
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Because of the extra osp(1|2)-invariance, Rs commutes with the first factor in each summand
and it can thus be regarded as a direct sum of operators P

(
Rm,W∞k ⊗Mk)→ P

(
Rm,W∞k ⊗Mk),

for all k ∈ N. It is therefore sufficient to consider its action on P
(
Rm,Mk) :

Rs
∣∣
P(Rm,Mk)

= (2k +m− 2)Rk ,

which yields a k-dependent scalar multiple of the Rarita-Schwinger operator Rk introduced
in [4, 5, 16]. It can be proved that Rk is the unique (up to a scalar multiple) conformally
invariant first order constant coefficient differential operator defined on P

(
Rm,Mk

)
, see e.g.

[11]. As we will point out in the next section, the operator Rs inherits the conformal invariance
properties of the Rarita-Schwinger operators Rk, see also [9]. Our definition of the Rs-operator
thus incorporates all the formerly defined operators Rk (where precisely the freedom of choice
of a scalar multiple depending on k is exploited to scale each of them in a particular way) into
one single operator. Using Rs, it does not matter how the space Mk(Rm, V ), as a model of
a Spin(m)-representation with highest weight (k + 1

2 ,
1
2 , · · · ,

1
2 ,±

1
2), is embedded into the full

space P(Rm, V ) of polynomials in u ∈ Rm. Moreover, as explained in [4], the structure of the
kernel of Rk as Spin(m)-representation can be determined inductively in terms of the kernels of
Rj , j = 0, . . . , k − 1 . This, together with their simple appearance, is an extra motivation for
considering the rescaled operators Rs and Ts.

8 Conformal Invariance

In this section, we investigate how the rescaled Rarita-Schwinger operator Rs transforms under
the conformal group Spin(m+1, 1). This group is generated by rotations, translations, dilations
and the inversion. In the framework of Clifford analysis, the group Spin(m + 1, 1) is usually
described in terms of Vahlen matrices (see e.g. the work [1] by Ahlfors). The behaviour of
the Rarita-Schwinger operator Rk (acting on Mk-valued functions) under the action of the
conformal group has also been elaborated in the paper [9]. Define the following representations
of the subsequent groups acting on an arbitrary function f(x;u) :

1. (L(s)f)(x;u) := sf(sxs; sus) , s ∈ Spin(m) (rotations)

2. (T (a)f)(x;u) := f(x− a;u) , a ∈ Rm (translations)

3. (D(λ)f)(x;u) := λ
m−1

2 f(λx;u) , λ ∈ R (dilations) .

The transformation behaviour of Rs under these representations is clear. First of all, Rs com-
mutes with the above defined L- and T -representation: this follows at once from the fact that Rs
can be expressed solely in terms of u, ∂u and ∂x (see definition 4) and each of these operators is
Spin(m)-invariants. Moreover RsD(λ) = λD(λ)Rs . So we only need to know how the inversion
acts on f . This turns out to be the most complicated action. We therefor fix the following
notations and definitions: the (monogenic) inversion operator IM acts on functions f(x) by(

IMf
)
(x) :=

x

|x|m
f

(
x

|x|2

)
.

The inversion operator IM maps monogenic functions to monogenic functions. This property
follows easily from the basic operator identity:

IM∂xIM = |x|2∂x . (6)

The H-action of ω = x
|x| on the dummy variable u defines a reflection of u in the hyperplane

orthogonal to ω . Its image can be expressed as

h(ω)u :=
xux

|x|2
= ωuω = ω

(
〈ω, u〉ω + u⊥

)
ω = u− 2〈ω, u〉ω
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and the induced action on functions g(u) is then given by
(
h(ω)g

)
(u) = g(ωuω). The inversion

operator for the Rarita-Schwinger operator Rk introduced in [4, 5, 9] leads to the following
definition, valid on the full space P(R2×m):

Definition 5. The inversion operator I acting on functions f(x;u) ∈ P(R2×m) is the operator
I := IM ⊗ h(ω), i.e.

(
If
)
(x;u) :=

x

|x|m
f

(
x

|x|2
; ωuω

)
= |x|−m+1ωf

(
x

|x|2
; ωuω

)
.

Note that this definition is equivalent with the more natural definition I := I−m+1⊗L(ω) where
L is the usual representation of Spin(m) and

(I−m+1f)(x) = |x|−m+1f

(
x

|x|2

)
.

For computational reasons we will use the first definition of I.

Lemma 3. For arbitrary functions g(u) we have :

h(ω)∂xh(ω)g(u) = −
[
Γu,

x

|x|2

]
g(u) .

Proof. Put x = |x|ω and v = h(ω)u = u− 2〈ω, u〉ω . Then

∂vj
∂xi

= −2
∂

∂xi

(
〈x, u〉
|x|2

xj

)
= − 2
|x|2

(
uixj + 〈x, u〉δij − 2〈x, u〉xixj

|x|2

)
.

As a result, we thus have that

∂xg
(
h(ω)u

)
= − 2

|x|2
m∑

i,j=1

ei

(
uixj + 〈x, u〉δij − 2〈x, u〉xixj

|x|2

)
∂g

∂vj
(v)

= − 2
|x|2

(
u〈x, ∂v〉+ 〈x, u〉∂v − 2

x

|x|2
〈x, u〉〈x, ∂v〉

)
g(v) ,

where we have put v = h(ω)u in both expressions on the right hand side. In view of the fact
that 〈x, v〉 = 〈x, u− 2〈ω, u〉ω〉 = −〈x, u〉, we thus obtain:

h(ω)∂xh(ω)g(u) = − 2
|x|2

(
xux

|x|2
〈x, ∂u〉 − 〈x, u〉∂u + 2

x

|x|2
〈x, u〉〈x, ∂u〉

)
g(u) .

Putting x = |x|ω, it is easily seen that this simplifies to

h(ω)∂xh(ω)g(u) = − 2
|x|
(
u〈ω, ∂u〉 − 〈ω, u〉∂u

)
g(u) .

On the other hand,

[Γu, ω] = −[u∂u, ω] = (ωu∂u − u∂uω) = 2
(
u〈ω, ∂u〉 − 〈ω, u〉∂u

)
,

which thus proves the statement. �

Corollary 1. For functions depending on (x;u) ∈ R2×m, we get :

h(ω)∂xh(ω)f(x;u) =
(
∂x −

1
|x|2

[
Γu, x

])
f(x;u) .
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We can now easily obtain the following result:

Lemma 4. On arbitrary functions f(x;u), one has the operator identity

I∂xI = |x|2∂x −
[
Γu, x

]
.

Proof. In view of the operator identity (6) and the previous corollary:

I∂xI = IMh(ω)∂xh(ω)IM

= IM∂xIM − IM
1
|x|2

[Γu, x] IM

= |x|2∂x − |x|ω
[
Γu, ω

]
ω

= |x|2∂x −
[
Γu, x

]
.

Note that the second term at the right-hand side can be rewritten as [Γu, x] = [x, P1]. �

Lemma 5. The inversion operator I anti-commutes with the odd part of the algebra osp(1|2)
(in the variable u), from which it follows that

[
P1, I

]
= 0.

Proof. This can be checked by direct computations. �

Proposition 5. The operator Rs is invariant with respect to I, i.e.

IRsI = |x|2Rs (7)

when acting on arbitrary functions f(x;u) .

Proof. By lemma 4 and 5 we have the operator identity

P1I∂xI = IP1∂xI = |x|2P1∂x + P1[x, P1] .

On the other hand, one has that

I∂xIP1 = I∂xP1I = |x|2∂xP1 + [x, P1]P1 .

It then suffices to note that P1[x, P1] + [x, P1]P1 = [x, P 2
1 ] = 0, which follows from the fact that

the operator P 2
1 is scalar (see expression (5)). Adding both identities then leads to the desired

result. �

Expression (7) shows that the inversion operator I (with a more complicated action) behaves in
the same way with respect to the rescaled Rarita-Schwinger Rs as the operator IM with respect
to the Dirac operator ∂x. In particular, I preserves the kernel of Rs . This is the starting point
to construct the fundamental solution of Rs .

9 Fundamental solutions

The aim of this section is to construct a fundamental solution E(x;u, v) for the operator Rs,
acting on the total space M of monogenic polynomials in the variable u. To do so, we want to
find a homogeneous solution, in distributional sense, to the equationRsE(x;u, v) = δ(x)K(u, v),
where the identity of the space End(M) is represented by the reproducing kernel K(u, v). For
the following result we refer to e.g. [8]:
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Definition 6. Let u = |u|eu, v = |v|ev and t = 〈eu, ev〉 ∈ [−1, 1] . The reproducing kernel
Kk(u, v) of Mk(Rm) is given by

Kk(u, v) = |x|k|u|kKk(eu, ev) := |x|k|u|k
(
C

m
2
k (t) + C

m
2
k−1(t)euev

)
,

where C
m
2
k (t) is a Gegenbauer polynomial and :

Mk(ev) =
1
Am

∫
Sm−1

Kk(eu, ev)Mk(eu)deu , Mk ∈Mk(Rm) .

Hereby deu denotes the invariant measure on Sm−1 and Am the surface area of Sm−1.

We will now first focus on a fixed degree of homogeneity k ∈ N, and switch to the total spaceM
at the end of the calculations. The space Mk(Rm,C+

m) is a direct sum of equivalent irreducible
Spin(m)-representations (for the L-action), each of them being generated by a highest weight
vector Pk(u, τ) := 〈u, τ〉kτ τ̄ for a suitable choice of null vector τ , (τ2 = 0). Therefore Kk(u, v)
can be expressed as a linear combination of L(s)Pk(u, τ) where τ varies in the set of chosen null
vectors. In the sequel we will derive various identities involving Spin(m)-invariant operators
acting on Pk(u, τ) . The afore-mentioned remark thus implies that such identies remain valid
when acting on Mk(Rm,C+

m), or in particular on Kk(u, v). Therefore we now focus on the
polynomial Pk(u, τ) (which is easier from computational point of view).

Lemma 6. For all k ∈ N, the plane wave Pk(u, τ) satisfies :

(i) The function u 7→ Pk(xux, τ) is harmonic in u

(ii) The function u 7→ xPk(xux, τ) is monogenic in u

(iii) ∂x
(
xPk(xux, τ)

)
= −(m+ 2k)Pk(xux, τ)− 2kuxPk−1(xux, τ)〈x, τ〉 .

(iv) For α ∈ C, the homogeneous function defined by

Fα,k(x;u, τ) := x|x|α−2kPk(xux, τ) ∈ C∞(Rm
0 ,Mk)

satisfies RkFα,k(x;u, τ) = −(α + m)|x|α−2kπk
[
Pk(xux, τ)

]
, where πk is defined as the

projection πk : Hk(Rm, V )→Mk(Rm, V ) .

Proof. For an arbitrary homogeneous polynomial Pk(u) of degree k:

Pk(xux) = |x|2k
(
h(ω)Pk

)
(u) and xPk(xux) = |x|2k+1

(
L(ω)Pk

)
(u) .

The actions h(ω) and L(ω) preserve harmonic, resp. monogenic polynomials in u . This implies
(i) and (ii). Property (iii) follows from straightforward calculations, invoking the definition

Pk(xux) =
(
|x|2〈u, τ〉 − 2〈x, τ〉〈x, u〉

)k
τ τ̄ .

By (iii), we get:

∂xFα,k(x;u, τ) = (α− 2k)x|x|α−2k−2xPk(xux, τ)
+ |x|α−2k

(
− (m+ 2k)Pk(xux, τ)− 2kuxPk−1(xux, τ)〈x, τ〉

)
= −(α+m)xFα−2,k(x;u, τ)− 2kuFα−2,k−1(x;u, τ)〈x, τ〉 .

The left hand side defines a spherical harmonic of order k in u . Applying the projection operator
πk to this expression yields (iv). �
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Lemma 7. The map α 7→ Fα,k(x;u, τ) can be extended to a holomorphic map C\{−(m+2p+2) :
p ∈ N} → D′(Rm,Mk) having simple poles in the excluded points. The homogeneous distribution
Fα,k(x;u, τ) satisfies :

RkF−m,k(x;u, τ) = − π
m
2 21−2k

Γ
(
k + m

2

)
k!

(
πk
[
∆k
xPk(xux, τ)

])
δ(x) . (8)

Proof. For <(α) > −(m + 1), the function x 7→ Fα,k(x;u, τ) belongs to the function space
Lloc1 (Rm,Mk), which means that it defines a distribution in D′(Rm,Mk) for these values for α.
This distribution depends holomorphically on α and can be extended to a meromorphic function
on C. Indeed, Fα,k(x;u, τ) can be seen as the product of the power |x|α−2k and a polynomial
in x ∈ Rm. Since the former defines a distribution on D′(Rm) or S ′(Rm), it is clear how to
define Fα,k(x;u, τ) as a distribution. Putting α = −m, we obtain by (iv) of the previous lemma
a function F−m,k(x;u) satisfying RkF−m,k(x;u) = 0 in Rm

0 and having a singularity of degree
−(m− 1) at the origin. In fact, this also follows from the relation

F−m,k(x;u, τ) := x|x|−m−2kPk(xux, τ) = (IPk)(x;u)

and the conformal invariance property (5). To compute RkF−m,k(x;u, τ) in distributional sense
we will use the so-called Riesz potentials. For <(λ) > −m, the generalized powers |x|λ define
an element of D′(Rm) satisfying ∆x|x|λ = λ(λ+m− 2)|x|λ−2 in distributional sense. This leads
to the definition of the Riesz potentials Iλ ∈ S ′(Rm) (see e.g. the work [14] of Gel’fand and
Shilov). We will summarize here the results which are of interest to us:

Iλ :=
Γ
(
−λ

2

)
π

m
2 2λΓ

(
λ+m

2

) |x|λ .
For <(λ) > −m, we have that ∆xIλ = −Iλ−2 in distributional sense. This identity can be used
to obtain an entire function λ 7→ Iλ. Indeed, for <(λ) > −(m+2p), one has Iλ = (−1)p∆p

xIλ+2p .
Therefore, one can shift the domain for λ to <(λ) > −(m + 2p). In the points λ = −m − 2p
(with p ∈ N), one obtains the homogeneous distributions

I−m−2p = (−1)p2m+1∆p
xδ(x)

with support in the origin. In terms of the original distribution |x|λ, one obtains a holomorphic
extension to C \ {−m − 2p : p ∈ N}. The poles in the excluded points are simple, and the
residues are given by

Res
[
|x|λ, λ = −m− 2p

]
=

π
m
2 21−2p

Γ
(
p+ m

2

)
p!

∆p
xδ(x) .

Returning to α 7→ Fα,k(x;u, τ) = |x|α−2kxPk(xux, τ), it is clear that this function can initially
be extended to C \ {−m − 2k − 2p : p ∈ N}. The poles of the form −m,−m + 2, · · · are
removable (follows from calculating the residue), which means that the function is holomorphic
in C \ {−(m+ 2p+ 2) : p ∈ N}. We thus have:

RkF−m,k(x;u, τ) = −Res
[
|x|α−2k, α = −m

]
πk
[
Pk(xux, τ)

]
= − π

m
2 21−2k

Γ
(
k + m

2

)
k!

∆k
xδ(x)πk

[
Pk(xux, τ)

]
= − π

m
2 21−2k

Γ
(
k + m

2

)
k!

(
πk
[
∆k
xPk(xux, τ)

])
δ(x) .

This proves the lemma. �
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In order to determine the projection πk
[
∆k
xPk(xux, τ)

]
in the last line, we proceed as follows.

The first step is to determine ∆k
xPk(xux, τ). As we will see shortly, the main property needed

here is that Pk(u, τ) is harmonic in u. Therefore we will focus our attention on ∆k
xHk(xux), with

Hk(u) ∈ Hk(Rm) .The space Hk(Rm) is irreducible under the h-action of the group Spin(m) .
Hence it is the linear span of h(s)wk(u, τ), with wk(u, τ) := 〈u, τ〉k a highest weight vector for
Hk(Rm). We then define the map

h(x) : Hk → P2k ⊗Hk : Hk(u) 7→ Hk(xux) .

This map is the unique 2k-homogeneous polynomial extension of the map ω 7→ h(ω)Hk(u), with
ω ∈ Sm−1 . An important feature of the map h(x) is that its composition with ∆k

x yields a
constant multiple of the identity on Hk(Rm):

Lemma 8. Let Hk(u) ∈ Hk(Rm) be arbitrary. Then the following holds:

∆k
x

(
h(x)Hk(u)

)
= ∆k

xHk(xux) = 22kk!
Γ
(
k + m−2

2

)
Γ
(
m
2

) Hk(u) . (9)

Proof. Since Hk(xux) ∈ P2k ⊗ Hk, we have that ∆k
xHk(xux) ∈ Hk and is independent of

x. For any s ∈ Spin(m), we then consider the h(s)-action on the variable u and the action
h2(s) := (h ⊗ h)(s) on (x;u). Both actions clearly commute with the operator ∆x, and for
Hk ∈ Hk(Rm) we have:(

h(x)h(s)Hk

)
(u) = Hk(sxuxs) =

(
h2(s)h(x)Hk

)
(u) .

As a result, the composed map ∆k
xh(x) : Hk → Hk commutes with the h-action of Spin(m).

Therefore, Schur’s lemma implies the existence of a constant Ck such that for all u ∈ Rm the
following holds:

∆k
xHk(xux) = CkHk(u) .

In order to fix this constant, it suffices to make a particular choice: we take Hk(u) = wk(u, τ),
with

u =
√

2
2

(e1 − ie2) and τ =
√

2
2

(e1 + ie2) ,

satisfying 〈u, τ〉 = 1. Introduce z := x− (x1e1 + x2e2) ∈ Rm−2, then:

〈xux, τ〉 = |x|2〈u, τ〉 − 2〈x, τ〉〈x, u〉 = |x|2 − (x2
1 + x2

2) = |z|2 .

Denoting the Laplace operator on Rm−2 by means of ∆z, this yields:

∆x〈xux, τ〉k = ∆k
x|z|2k = ∆k

z |z|2k .

Recalling (1) and using standard calculations in the algebra U(sl(2)), or invoking the polar
decomposition for the Laplace operator on Rm, it is easily verified that

∆x|x|2k = 22kk!
Γ
(
k + m

2

)
Γ
(
m
2

) .

Therefore, with the choices for u and τ from above, we get:

∆k
xwk(xux, τ) = ∆k

z |z|2k = 22kk!
Γ
(
k + m−2

2

)
Γ
(
m
2

) = Ckwk(u, τ) = Ck .

Since ∆k
xh(x) commutes with the h-action on Hk, the result (9) follows. �
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We can now finally determine the fundamental solution Ek(x;u, v) of the Rarita-Schwinger
operator Rk. The expression for Ek(x;u, v) we give here was first obtained in [4]. For an
alternative proof we also refer to [9]. In both cases, the proof is based on the Cauchy integral
formula for Rk.

Proposition 6. Put x = |x|ω. The fundamental solution of Rk is given by

Ek(x;u, v) := − 1
Am

2k +m− 2
m− 2

x

|x|m
Kk(ωuω; v) ∈ C∞

(
Rm

0 ,End(Mk)
)

and satisfies RkEk(x;u, v) = δ(x)Kk(u; v) .

Proof. In view of lemma 8 and 9, we thus have the following normalization:

RkF−m,k(x;u, τ) = − 4π
m
2

(2k +m− 2)Γ
(
m−2

2

)δ(x)Pk(u, τ) .

Introducing the surface area Am of Sm−1, given by Am = 2π
m
2

Γ(m
2 ) , we are thus lead to the following

conclusion:

(2k +m− 2)Rk
(
− 1

(m− 2)Am
F−m,k(x;u, τ)

)
= δ(x)Pk(u, τ) . (10)

The statement then follows by replacing Pk(u, τ) by Kk(u, v) as explained before. �

We now give some examples where the rescaled operator Rs appears in a natural way as an
operator acting on functions f ∈ C∞(Ω, U), Ω being an open subset of Rm. Here, we take U to
be an (infinite dimensional) L2-space obtained by taking the closure ofM(Rm, V ) or P(Rm, V )
with respect to a chosen inner product.

Example 1
The first example deals with Rs acting on functions f(x) taking values in a Hardy space of
monogenic functions inside the unit ball Bm(1) of Rm, see e.g. [13, 15]. Define

H2
(
M(Bm)

)
:=

{
f(u) ∈M

(
Bm(1)

)
: sup

0<|u|<1

∫
Sm−1

|f(u)|2deu < +∞

}
.

By taking boundary values in L2-sense, this Hardy space is isomorphic with

H2(Sm−1) :=

{
lim
r

<→1

f(rω) : f(u) ∈ H2
(
M(Bm)

)}

which admits the L2-decomposition

H2(Sm−1) =
∞⊕
k=0

Mk(Sm−1) .

This is the subspace of L2(Sm−1, V ) on which the Hilbert transform HS acts like the identity. We
may now let Rs act on C∞(Ω, H2(Sm−1)) and look for the corresponding fundamental solution.
Consider the expansion in L2(Sm−1,Cm) (see e.g. [8]):

S(eu, ev) :=
1 + euev
|eu − ev|m

=
∞∑
k=0

Kk(eu, ev) .
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The function on the left-hand side is the reproducing kernel of H2(Sm−1) which may be identified
with the boundary value on the unit sphere Sm−1 of the Szegö kernel for the Hardy space
H2
(
M(Bm)

)
. In view of (10) in proposition 6, we obtain, replacing (2k +m− 2)Rk by Rs:

Rs
(
− 1

(m− 2)Am
x

|x|m
Kk(ωeuω, ev)

)
= δ(x)Kk(eu, ev) . (11)

Taking the sum over all k ∈ N in L2-sense yields:

Rs
(
− 1

(m− 2)Am
x

|x|m
S(ωeuω, ev)

)
= δ(x)S(eu, ev) .

This leads to the following

Proposition 7. Let S(eu, ev) be the reproducing kernel of the Hardy space H2(Sm−1). The
kernel E(x; eu, ev) defined by

E(x; eu, ev) := − 1
(m− 2)Am

x

|x|m
S(ωeuω, ev) ∈ C∞

(
Rm

0 ,End(H2(Sm−1))
)

satisfies RsE(x; eu, ev) = δ(x)S(eu, ev) and one has in L2-sense (with respect to eu ∈ Sm−1 and
with ev ∈ Sm−1 fixed) :

E(x; eu, ev) =
∞∑
k=0

Ek(x; eu, ev)
2k +m− 2

.

Example 2
As the operator Rs commutes with the algebra osp(1|2), we can now also derive a fundamental
solution for the operatorRs acting on the full space of polynomials in the vector variable u ∈ Rm.
To do so, we need the following:

Definition 7. Let P,Q ∈ P(Rm, V ) . The Fischer inner product of P and Q is the positive
definite Hermitean inner product defined as

〈P,Q〉 := [P †(∂u)Q(u)]0
∣∣
u=0

,

where the dagger † denotes the Hermitean conjugation, which is the tensor product of the
Clifford conjugation and the classical complex conjugation.

Let F be the closure of P(Rm, V ) with respect to the Fischer inner product. The reproducing
kernel of F is the exponential function e〈u,v〉 because

P (u) = 〈e〈u,v〉, Q(v)〉 .

We may now consider the action of Rs on C∞(Ω,F) . We thus obtain:

Proposition 8. The fundamental solution F (x;u, v) of Rs is given by :

F (x;u, v) := − 1
(m− 2)Am

x

|x|m
He〈ωuω,v〉 ∈ C∞(Rm

0 ,End(F)) (12)

and satisfies

RsF (x;u, v) = δ(x)e〈u,v〉 .

Note that the action of the Hilbert transform H on the variable u is crucial.
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Proof. The reproducing kernel e〈u,v〉 has a Fischer decomposition of the form:

e〈u,v〉 =
∞∑
k=0

∞∑
j=0

cjku
jKk(u, v)

for suitable constants cjk. Recall that both the inversion operator I and the Hilbert operator
H anti-commute with the odd part of osp(1|2) (in the u-variable). Thus IH and Rs commute
with osp(1|2) . Hence, in view of identity (11):

RsIHe〈u,v〉 =
∞∑
k=0

∞∑
j=0

cjku
jRsIKk(u, v) = −(m− 2)Amδ(x)e〈u,v〉 .

This proves the statement. �

Recall that the Hilbert transform HS on the sphere is usually defined by a singular integral
operator (definition 2). There exists an alternative characterization for HS as an integral over
the projective space Sm−1/Z2, as we will now prove. The first step is the following:

Lemma 9. For all Hk(u) ∈ Hk(Rm), we have that

1
Am

∫
Sm−1

(
h(ω)Hk(u)

)
dω =

m− 2
2k +m− 2

Hk(u) .

(cfr. [10] or [9] for an alternative proof based on special functions)

Proof. It suffices to consider the harmonic Fischer decomposition of the polynomial Hk(xux)
in P2k ⊗Hk, with respect to the variable x:

Hk(xux) =
k∑
p=0

|x|2k−2pH2p,k(x, u) with H2p,k(x, u) ∈ H2p ⊗Hk .

The orthogonality of spherical harmonics on the sphere Sm−1 immediately leads to

1
Am

∫
Sm−1

Hk(xux)dω = H0,k(ω, u) = H0,k(0, u) .

Here, we have made use of the fact that the term corresponding to p = 0 is constant in ω. To
determine H0,k(0, u), we use the identity (9) and the fact that

∆k
xHk(xux) = (∆k

x|x|2k)H0,k(0, u) = 22kk!
Γ
(
k + m

2

)
Γ
(
m
2

) H0,k(0, u) .

Combining both equations indeed leads to the desired formula. �

This lemma can now easily be generalized to smooth (or square integrable) functions on Sm−1:

Proposition 9. For all f(eu) ∈ C∞(Sm−1), we have that

1
Am

∫
Sm−1

(
h(ω)f(eu)

)
dω =

m− 2
|m− 2− 2Γu|

f(eu)

=
m− 2

m− 2− 2Γu
(HSf)(eu) .
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Proof. First we decompose the dense subspace C∞(Sm−1) of L2(Sm−1) into spherical harmon-
ics. It then suffices to apply the previous result and to use the Fischer decomposition of a
spherical harmonic into spherical monogenics:

Hk(u) = Pk(u) + uPk−1(u) , Pj(u) ∈Mj(Rm) .

Invoking the fact that

(m− 2− 2Γu)Pk(u) = (m− 2 + 2k)Pk(u)
(m− 2− 2Γu)uPk−1(u) = −(m− 2 + 2k)uPk−1(u)

proves the lemma. �

This result remains valid for the extension H of HS to P(Rm, V ) thus leading to the integral
representation of the Hilbert operator H on P(Rm, V ) :

Proposition 10. For all f(u) ∈ P(Rm, V ), we have that

(Hf)(u) =
1
Am

m− 2− 2Γu
m− 2

∫
Sm−1

(
h(ω)f

)
(u)dω .

Proof. This follows from the previous lemma and the fact that the action of H, h(ω) and P1

commute with |u|2. �
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