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Isolated and Syndromic Retinal Dystrophy
Caused by Biallelic Mutations in RCBTB1,
a Gene Implicated in Ubiquitination

Frauke Coppieters,1,2,18,* Giulia Ascari,1,18 Katharina Dannhausen,3 Konstantinos Nikopoulos,4

Frank Peelman,5 Marcus Karlstetter,3,6 Mingchu Xu,7 Cécile Brachet,8 Isabelle Meunier,9,10,11

Miltiadis K. Tsilimbaris,12 Chrysanthi Tsika,12 Styliani V. Blazaki,12 Sarah Vergult,1 Pietro Farinelli,4

Thalia Van Laethem,1 Miriam Bauwens,1 Marieke De Bruyne,1 Rui Chen,7,13 Thomas Langmann,3

Ruifang Sui,14 Françoise Meire,15 Carlo Rivolta,4 Christian P. Hamel,9,10,11 Bart P. Leroy,1,16,17

and Elfride De Baere1,*

Inherited retinal dystrophies (iRDs) are a group of genetically and clinically heterogeneous conditions resulting frommutations in over

250 genes. Here, homozygosity mapping and whole-exome sequencing (WES) in a consanguineous family revealed a homozygous

missense mutation, c.973C>T (p.His325Tyr), in RCBTB1. In affected individuals, it was found to segregate with retinitis pigmentosa

(RP), goiter, primary ovarian insufficiency, and mild intellectual disability. Subsequent analysis of WES data in different cohorts uncov-

ered four additional homozygous missense mutations in five unrelated families in whom iRD segregates with or without syndromic fea-

tures. Ocular phenotypes ranged from typical RP starting in the second decade to chorioretinal dystrophy with a later age of onset. The

fivemissensemutations affect highly conserved residues either in the sixth repeat of the RCC1 domain or in the BTB1 domain. A founder

haplotype was identified for mutation c.919G>A (p.Val307Met), occurring in two families of Mediterranean origin. We showed ubiqui-

tous mRNA expression of RCBTB1 and demonstrated predominant RCBTB1 localization in human inner retina. RCBTB1 was very

recently shown to be involved in ubiquitination, more specifically as a CUL3 substrate adaptor. Therefore, the effect on different

components of the CUL3 and NFE2L2 (NRF2) pathway was assessed in affected individuals’ lymphocytes, revealing decreased mRNA

expression of NFE2L2 and several NFE2L2 target genes. In conclusion, our study puts forward mutations in RCBTB1 as a cause of auto-

somal-recessive non-syndromic and syndromic iRD. Finally, our data support a role for impaired ubiquitination in the pathogenetic

mechanism of RCBTB1 mutations.
Inherited retinal dystrophies (iRDs) are a major cause of

blindness worldwide. They compose a group of genetic

eye disorders with a broad phenotypic spectrum and vari-

able age of onset and are caused by progressive degenera-

tion of rod and cone photoreceptors and/or the retinal

pigment epithelium (RPE).1 Most iRDs are genetically het-

erogeneous; mutations have been identified in over 250

genes thus far (RetNet), allowing a molecular diagnosis in

up to 80% of cases.2 Many of these genes were identified

on the basis of their role in retina-specific pathways. In

recent years, however, an increasing number of defects

have been found in ubiquitously expressed genes playing

roles not only in retinal pathways but also in more general

pathways, e.g., DHDDS (dehydrodolichyl diphosphate

synthase subunit [MIM: 608172]), HGSNAT (heparan-

alpha-glucosaminide N-acetyltransferase [MIM: 610453]),
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MFSD8 (major facilitator superfamily domain containing

8 [MIM: 611124]), and MVK (mevalonate kinase [MIM:

251170]) (RetNet). The isolated retinal phenotypes can

often be explained by hypomorphic mutations resulting

in partial loss of function, whereas syndromic phenotypes

are caused by more severe mutations.3–5

The initial aim of this study was to unravel the genetic

etiology in a Belgian consanguineous family of Turkish

origin (F1) in whom two autosomal-recessive traits segre-

gate in two branches (Figure 1). In the first branch, three

females present with retinitis pigmentosa (RP [MIM:

268000], the most common iRD), goiter (MIM: 138800),

primary ovarian insufficiency (POI [MIM: 311360]), and

mild intellectual disability. In the second branch, two indi-

viduals display postaxial polydactyly (MIM: 174200), a

feature not present in any of the individuals with RP
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Figure 1. RCBTB1Mutations Identified in
Six Families Affected by Syndromic and
Non-syndromic iRD
Filled symbols represent affected individ-
uals, whereas clear symbols represent unaf-
fected individuals. A double line represents
reported consanguinity. Genotypes of
different family members are indicated
below them. Individuals who underwent
identity-by-descent mapping and/or
whole-exome sequencing are indicated by
IBD and WES, respectively.
(Figure 1). A summary of the retinal manifestations can be

found in Figure 2 and Table 1, and the other clinical fea-

tures are provided in Table 1 and the Supplemental Note

(case report S1). This study was approved by the ethics

committee of Ghent University Hospital, adhered to

the tenets of the Declaration of Helsinki, and obtained

informed consent from all participants. Peripheral blood

was collected from affected individuals, parents, and unaf-

fected relatives if available. Genomic DNA was extracted

from blood leukocytes according to standard procedures.

Identity-by-descent (IBD) mapping in three affected indi-

viduals (IV:3, V:1, and V:2) and one unaffected individ-

ual (V:3) revealed a single genomic region (hg38 chr13:

41,246,578–52,963,036) that is homozygous in the affected

individuals andheterozygous in thehealthysibling (Affyme-

trix GeneChip Human Mapping 250K). Subsequent whole-

exome sequencing (WES; TruSeq Exome Enrichment, HiSeq

2000, Illumina) in two affected individuals (IV:3 and V:1)
The American Journal of Human G
identified in RCBTB1 (RCC1 and BTB

domain containing protein 1 [MIM:

607867]) the homozygous missense

variant c.973C>T (p.His325Tyr) (Gen-

Bank: NM_018191.3), which is pre-

dicted to affect protein function (Fig-

ure S1 and Table S1). Segregation

of this variant with the disease in

the family was confirmed by Sanger

sequencing of RCBTB1 exon 9 (Fig-

ure 1). The variant was found to be

absent in 142 control individuals, 68

of whom are of Turkish origin. This

change is known as rs200826424 in

dbSNP and has an overall allele fre-

quency of 0.0091% in the Exome Ag-

gregation Consortium (ExAC) Browser

(no homozygotes were observed).

In order to identify additional

iRD-affected families with mutations

in RCBTB1, we performed targeted

next-generation sequencing on the

coding region of RCBTB1 as previ-

ously described6 (Table S2) in a

Belgian cohort of 281 probands with

autosomal-recessive or sporadic iRD.

This did not reveal any mutations. In-
spection ofWES data (Table S3) in ~450 unsolved iRD cases

from four cohorts from the European Retinal Disease Con-

sortium revealed homozygous mutations in the probands

of five additional families; these individuals display iso-

lated or syndromic iRDwith thyroid involvement or senso-

rineural hearing loss (Table 1).

In all families, the RCBTB1mutations are the most likely

cause of the common retinal phenotype identified byWES

(Table S4). All mutations are missense changes, were iden-

tified in a homozygous state in the affected individuals,

and segregate with disease in the family (Figure 1). RCBTB1

is located in the largest (F1 and F4) or third largest (F3) ho-

mozygous region in families in whom IBD mapping was

performed (Figure S2). As summarized in Table S1, all mu-

tations have very lowminor allele frequencies or are absent

in the ExAC Browser, and all are predicted to be delete-

rious. In family F5, two RCBTB1 variants were identified

in cis, and both are present in a homozygous state in the
enetics 99, 470–480, August 4, 2016 471



Figure 2. Representative Retinal Pictures
of Index Individuals from the Six Families
Affected by RCBTB1-Associated iRD
(F1) Composite fundus picture of the
retinal epithelium of individual V:2 shows
outer retinal atrophy, which is more
pronounced in the retinal periphery
with predominantly spicular intraretinal
pigmentation, and a better preserved mac-
ula. Overall, this is compatible with a diag-
nosis of RP.
(F2–F6) Fundus pictures show progres-
sive pattern-like reticular dystrophy in
the retinal periphery, fine heterogeneity
of pigment epithelium alterations, and
rounded spots of chorioretinal macular
atrophy (which enlarge with age). (F2)
Fundus picture of the left eye of II:4 at
age 68 years shows features similar to those
of II:2 (F6), i.e., some pigment deposits in
the form of large brown spots, as well as
retinal atrophy. (F3) Fundus picture of
the right eye of II:1 shows central coales-
cent areas with chorioretinal atrophy and
peripheral reticular dystrophy. (F4) Second
and third panels, right column: fundus
picture and autofluorescence of the right
eye of II:5 (67 years) show central and
peripapillary chorioretinal atrophy. (F5)
Fundus picture of the right eye of II:6
at 55 years. A detailed macular view shows
a discolored retina, which reflects the
retinal atrophy and a few fine pigment
deposits. (F6) Left: fundus picture of LE
of II:2 displays features similar to those
of II:4 (F2). Right: fluorescence angiog-
raphy of the right eye of II:2 displays irreg-
ular hypofluorescent areas in the posterior
pole.
proband and in a heterozygous state in her unaffected

daughter. It is still unclear which of these variants is causal.

Both variants have comparable in silico predictions on pro-

tein function (Table S1). The c.1151A>G (p.His384Arg)

variant affects a highly conserved residue, and pro-

tein modeling suggests a disruptive effect, whereas the

c.1202C>T (p.Ser401Leu) variant affects a less conserved,

surface-exposed residue for which protein modeling is

inconclusive (see below).

The c.919G>A (p.Val307Met) mutation was found

in two families originating from Italy (F2) and Greece

(F3). Segregation analysis with microsatellite markers and
472 The American Journal of Human Genetics 99, 470–480, August 4, 2016
SNPs revealed a 3Mb common haplo-

type, which suggests a Mediterranean

founder mutation (Figure S3).

RCBTB1 has a regulator of chro-

mosome condensation 1 (RCC1)-like

domain (RLD) and two broad com-

plex, tramtrack, and bric-a-brac (BTB)

domains (UniProt: Q8NDN9).7 Three

(F1–F4) and two (F5 and F6) of the

mutations are located in the sixth

repeat of the RLD (RCC6) and in the
first BTB domain (BTB1), respectively (Figure 3). The

affected and surrounding amino acids are highly conserved

throughout evolution (Figure S4).

The BTB domain is a protein-protein-interaction motif

with a high degree of sequence variability. Sequence

comparison based on structure superposition of different

protein families revealed only 15 significantly conserved

residues out of 95 amino acids composing the core

BTB, and 12 of them are buried in the monomer core.

In contrast, highly variable residues are located on

the exposed interaction surface and probably contribute

to interaction behavior.15,16 Interestingly, the RCBTB1



Table 1. Overview of RCBTB1 Mutations and the Associated Phenotypes Identified in This Study

Family Origin Mutation (Zygosity) Individual

Retinal Phenotype

Extra-ocular Phenotypic
Manifestations

Age of Onset
(Years) Characteristics

F1 Turkey c.973C>T (p.His325Tyr)
(hom)

V:1 17 severe iRD compatible with RP goiter, POI, and mild ID

V:2 14 severe iRD compatible with RP goiter, POI, mild ID, recurrent
otitis media, psoriasis, and
allergy to house dust mites

IV:3 18 severe iRD compatible with RP goiter, POI, and mild ID

F2 Italy c.919G>A (p.Val307Met)
(hom)

II:4 40 progressive pattern-like
reticular dystrophy

none reported

II:5 55 progressive pattern-like
reticular dystrophy

none reported

F3 Greece c.919G>A (p.Val307Met)
(hom)

II:1 50 central chorioretinal atrophy
and peripheral reticular
dystrophy

thyroid nodules, cold
intolerance, and
dyslipidemia; son with autism
and ID

F4 Greece c.930G>T (p.Trp310Cys)
(hom)

II:5 45 central chorioretinal atrophy
and peripheral reticular
dystrophy

sensorineural hearing loss
(adult onset) and spinal
ganglioglioma

III:2 30 central chorioretinal atrophy
and peripheral reticular
dystrophy

sensorineural hearing loss
(adult onset); mother with
reported Hashimoto
thyroiditis

F5 Algeria c.1151A>G (p.His384Arg)
(hom) and
c.1202C>T (p.Ser401Leu)
(hom)

II:6 48 progressive pattern-like
reticular dystrophy

lung fibrosis

F6 China c.1164G>T (p.Leu388Phe)
(hom)

II:2 33 retinal dystrophy starting
with bilateral vision loss;
fundus with bilateral irregular
pigmentations mainly in the
mid-periphery

none reported

The phenotypes associated with RCBTB1 mutations vary from a more severe iRD (i.e., RP) and shared extra-ocular features (goiter, POI, and mild ID) in three F1
individuals to progressive iRD with or without extra-ocular features in seven individuals from five families (F2–F6). The clinical onset of iRD in these families is be-
tween 30 and 50 years of age, mostly with decreasing visual acuity and an absence of complaints about the peripheral visual field. Fundus pictures show reticular
dystrophy in the retinal periphery and rounded spots of chorioretinal macular atrophy, which enlarge with age. Electroretinography is characterized by moderate
alterations of all responses (which worsen with age), indicating loss of both rods and cones. Abbreviations are as follows: hom, homozygous; ID, intellectual
disability; POI, primary ovarian insufficiency; iRD, inherited retinal dystrophy; and RP, retinitis pigmentosa.
mutations c.1151A>G (p.His384Arg) (F5) and c.1164G>T

(p.Leu388Phe) (F6) affect 2 of the 12 highly conserved

amino acids. As for the RLD domain, the residues Val307

and Trp310 are both hydrophobic amino acids highly

conserved in human RLD superfamily proteins.17

We built homology models for both RCBTB1 do-

mains. The models predict a deleterious effect for muta-

tions c.919G>A (p.Val307Met), c.930G>T (p.Trp310Cys),

c.1151A>G (p.His384Arg), and c.1164G>T (p.Leu388Phe),

whereas the accuracy of the models does not allow predict-

ing the effect of c.973C>T (p.His325Tyr) or c.1202C>T

(p.Ser401Leu) (Figure 3).

The retinal phenotype associated with RCBTB1 muta-

tions varies from a severe iRD compatible with RP to a

progressive iRD with central chorioretinal atrophy and pe-

ripheral reticular dystrophy (Figure 2 and Table 1). It has

previously been described that mutations in a single gene

cause distinct iRDs. Well-known examples of genes in

which mutations can cause both RP and chorioretinal

atrophy are PRPH218 (peripherin 2 [MIM: 179605]) and
The Amer
ABCA419 (ATP binding cassette subfamily A member 4

[MIM: 601691]). Possible contributing factors are the na-

ture, severity, and location of the mutated alleles.

Non-ocular features observed in families affected by

RCBTB1mutations include adult-onset sensorineural hear-

ing loss (F4), lung fibrosis (MIM: 178500; F5), and thyroid

involvement (Table 1). The latter was observed in three

families. In F1, two sisters have RP, small teeth, goiter

with normal thyroid-stimulating hormone (TSH) and free

thyroxine (FT4) and the absence of thyroid autoanti-

bodies, higher than normal weight, and mild intellectual

disability. In addition, spontaneous pubertal development

andmenarche at 14 years of age preceded secondary amen-

orrhea at the age of 15–16 years and gonadotropin eleva-

tion, indicating POI. More detailed endocrinological data

of individuals V:1 and V:2 are listed in the Supplemental

Note (see case report S1). Family history showed a goiter

at 38 years of age in the mother (IV:2) and the association

of RP, goiter, POI, and slight intellectual disability in a

maternal cousin (IV:3). To our knowledge, the association
ican Journal of Human Genetics 99, 470–480, August 4, 2016 473
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Figure 3. Location and Structural
Modeling of Identified RCBTB1 Missense
Variants
(A) Schematic diagram of RCBTB1 shows
the location of the missense variants
within two distinct domains: three (F1–
F4) in the sixth repeat of the RCC1-like
domain (RLD), i.e., RCC6, and two (F5
and F6) in the first BTB domain (BTB1).
(B) A homology model for the b-propeller
structure of the RLD is shown in rainbow
colors, evolving from blue (N-terminal)
to red (C-terminal). The RCBTB1 RLD con-
tains seven repeats that form a seven-
bladed b-propeller, in which each blade
consists of a four-stranded antiparallel
b sheet. The p.Val307Met (c.919G>A),
p.Trp310Cys (c.930G>T), and p.His325Tyr
(c.973C>T) variants are all found in the
sixth blade. Val307 and Trp310 are part of
the third strand of blade 6. Trp310 is
a conserved aromatic. The bulky indole
group of Trp310 is buried in the hydropho-
bic core between blades five and six and
makes extensive Van der Waals contacts

with three aliphatic sidechains of blade five. p.Trp310Cys therefore introduces a big void between both blades and is probably highly
destabilizing. Val307 is part of a hydrophobic core between blades six and seven. The more bulky methionine side chain introduced
by p.Val307Met is clashing with residues of blade seven. His325 cannot be modeled accurately because alignments with different
methods and against different templates give diverging outcomes for the exact position of this residue. Most likely, His325 is surface
exposed at the end of the fourth strand of blade six.
(C) A homology model for the RCBTB1 BTB domain is shown in rainbow colors, evolving from blue (N-terminal) to red (C-terminal).
Another interacting RCBTB1 BTB domain is shown in pink. Part of an interacting CUL3 molecule is shown in gray. His384 is found
at the BTB homodimerization interface. A histidine is present at this position in nine of ten BTB structures aligned with the RCBTB1
BTB domain.8 His384 forms an extensive hydrogen-bond network at the interfacial area and makes a direct Van der Waals contact
with the homodimerization partner. p.His384Arg (c.1151A>G) disrupts the hydrogen-bonding network, and accommodation of two
bulky arginine residues in the homodimer interface is impossible. Leu388 is an extremely conserved residue of the hydrophobic BTB
core and is identical in all ten crystal structures. p.Leu388Phe (c.1164G>T) introduces drastic steric clashes of the phenyl ring with
surrounding hydrophobic residues. Ser401 is a surface-exposed residue that is either close to or at the edge of the BTB-CUL3 interface,
depending on the template that was used. It is unclear whether p.Ser401Leu (c.1202C>T) can disrupt the interaction with CUL3. Ho-
mology models were built on the basis of different structure templates with YASARA Structure.9,10 Additional models were built in
MODELER and YASARA Structure with alignments based on HHPRED and Phyre2.8–12 On the basis of the initial models, the alignments
were edited for model improvement, as judged by the DOPE score in MODELER, visual inspection, and Verify_3D 3D profile analysis of
the models.11,13 The models are based on template structures of RLD (PDB: 4O2W) and the BTB domain complex (PDB: 4J8Z and 4AP2).
The effects of the variants were analyzed in YASARA Structure.9,10 Figures were generated with UCSF Chimera.14
between POI and goiter without auto-immunity has not

been described before in a known clinical entity.

For the F3 proband, who suffers from thyroid nodules,

cold intolerance, and dyslipidemia, no endocrine data are

available. In F4, the mother of the proband (II:6) was diag-

nosed with Hashimoto thyroiditis (MIM: 140300) on the

basis of clinical appearance and laboratory findings. Ultra-

sound showed a multinodal goiter (increased total thyroid

volume with multinodal appearance without neoplastic

characteristics). TSH and hormones T3 and T4 were within

normal limits, but antibodies against TSH and thyroglob-

ulin were elevated.

Because the combination of iRD and thyroid disease is

rare, WES data of F1 were also analyzed for the presence

of variants in genes important for thyroid function and/

or in which mutations are known to cause thyroid disease,

as well as genes located in the shared IBD region and pre-

dicted to be related to goiter on the basis of gene-prioritiza-

tion tools (Table S5 and Figure S5). However, we did not

identify variants that could explain the thyroid phenotype
474 The American Journal of Human Genetics 99, 470–480, August 4
(Table S6). Despite this extensive variant analysis, we

cannot completely rule out the possibility that mutations

in other genes cause the non-ocular phenotypes such as

thyroid involvement, especially linked mutations in auto-

zygous regions in the case of consanguineous origin.

So far, little is known about the function of RCBTB1.

RCBTB1 was initially identified as a candidate gene for

chronic lymphocytic leukemia (MIM: 151400) and was

shown to activate the pathway for DNA damage and

repair.7,20,21 In addition, overabundant RCBTB1 induces

cellular hypertrophy in cultured rat vascular smooth mus-

cle and renal proximal tubular cells as an angiotensin II

type 1 receptor-associated protein, and a synonymous

SNP in RCBTB1 modifies the effect of smoking on carotid

intima-media thickness.22,23 In a final stage of this study,

haploinsufficiency of RCBTB1 was shown in two families

in whom mutations segregate with Coats disease (MIM:

300216) or familial exudative vitreoretinopathy (FEVR

[MIM: 133780]). Functional analysis suggested a role for

RCBTB1 in retinal angiogenesis through Norrin-induced
, 2016



RCBTB1 human mRNA expression analysis
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Figure 4. Expression Analysis of RCBTB1 mRNA
(A) Expression analysis was performed according to the manufacturer’s instructions with an in-house-designed custom array (SurePrint
G3 Human Gene Expression array version 2, AMADID 041648, Agilent Technologies) covering all protein-coding genes and 22,980 long
non-coding RNA transcripts (LNCipedia version 2.1). Data normalization was performed with the VSN package in R. All values were log2
transformed. Samples included total RNA from whole brain, colon, heart, kidney, liver, lung, breast, and adrenal gland (Stratagene Eu-
rope; all adult tissues); cerebellum, brain stem, striatum, frontal cortex, occipital cortex, and parietal cortex (Agilent; adult tissues); and
fetal whole brain (Agilent).
(B) qPCR-based expression analysis of mRNA from RCBTB1 and two positive control genes strongly expressed in the retina and retinal
pigment epithelium (RPE) was performed as previously described25 on commercial human cDNA from retina (BioChain) and RPE (3H
Biomedical). High retinal and limited RPE expression was observed. Error bars represent the SE of the relative quantities.
b-catenin signaling. A clinical overlap with RP was

excluded in one of the probands given the absence of night

blindness, a typical fundus aspect of FEVR without bony

spicules or narrow vessels, and a preserved electroretino-

gram in one eye.24 In the families included here, no

FEVR signs could be observed, sustaining the hypothesis

that distinct molecular consequences of RCBTB1 muta-

tions and zygosity cause different clinical entities.

Because of the syndromic phenotypes observed in this

study, we explored the expression pattern of RCBTB1 hu-

man mRNA by analyzing in-house whole-transcriptome

expression arraydata,which showedubiquitous expression

(SurePrint G3 Human Gene Expression array version 2,

AMADID 041648, Agilent Technologies) (Figure 4A). Thy-

roid RCBTB1 expression was observed in several experi-

ments centralized in the EMBL-EBI Expression Atlas. The

gene was found to be moderately expressed in the cochlea,

saccule, utricle, andampullaof the adulthuman inner ear.26

Next, we performed targeted analysis of the expression of

RCBTB1 and Rcbtb1mRNA in different human andmurine

tissues, respectively. RCBTB1mRNA showed relatively high

and limited expression in the human retina and RPE,

respectively, and Rcbtb1 mRNA showed strong expression

in the murine retina, RPE, and ovary (Figure 4B and

Figure S6). On the basis of these expression results, staining

of RCBTB1 was performed on murine and human retinal

sections (Figure 5). In themurine retina, RCBTB1was found

mainly in the inner retinawith strong signals reachingup to

theouter plexiform layer (Figures 5Aand5B). Inhumansec-

tions, immunostaining was present in the nerve fiber layer

and to a lesser extent in the inner andouter plexiform layers

(Figures 5C and 5D). The staining signal in the photore-

ceptor layer is very likely due to autofluorescence of outer

segments, as described before.28
The Amer
The RCC1-like domain is present in several ciliary pro-

teins, whose encoding genes (RPGR [retinitis pigmentosa

GTPase regulator (MIM: 312610)], NEK8 [NIMA related ki-

nase 8 (MIM: 609799)], and recently NEK9 [NIMA related

kinase 9 (MIM: 609798)]) are implicated in Mendelian dis-

ease.29–31 For RPGR and NEK8, this domain is involved in

targeting the protein to the photoreceptor connecting

cilium and centrosome, respectively.29,30 Hence, co-stain-

ing of RCBTB1 with acetylated a-tubulin was performed

in the retina. However, no clear co-staining was observed

(Figure S7).

RCBTB1 has previously been shown to be involved in

ubiquitination, a post-translational modification with a

wide variety of functions, among which is the recognition

of proteins for proteasome degradation.32 In this process,

ubiquitin is first activated by an activating enzyme (E1)

and thencarriedbya conjugating enzyme (E2) to a substrate

through interaction with a ubiquitin ligase (E3) (Figure S8).

RCBTB1 was identified as a putative substrate adaptor for

cullin 3 (CUL3). CUL3 is the major component of the

CULLIN3-RINGubiquitin ligases (CRL3), an emerging class

of E3 enzymes regulating a wide range of cellular and devel-

opmental processes (Figure S8).32,33 Substrate recognition is

highly specific and mediated by substrate adaptors such as

RCBTB1, which recruit substrates to the CRL3 complex. In

addition, RCBTB1 was shown to interact with UBE2E3, an

E2 enzyme that is highly present in the retina and is impor-

tant for modulating the balance between RPE cell prolifera-

tion and differentiation.32,34,35 Recent evidence has shown

that UBE2E3 regulates the localization and activity of the

stress-response transcription factor NFE2L2 (nuclear factor,

erythroid 2 like 2, often called NRF2) in concert withmem-

bers of theCRL3 complex (Figure S8).36 The retina is known

to be extremely sensitive to oxidative stress. In this way,
ican Journal of Human Genetics 99, 470–480, August 4, 2016 475



Figure 5. RCBTB1 Staining on Human
and Murine Retinal Sections
(A and B) Representative fluorescence im-
ages of murine cryosections stained with
RCBTB1 antibody (1:100, Abcam) (A) or
negative control (B). RCBTB1 immunore-
activity in the murine retina mainly local-
ized to the inner retina.
(C and D) Representative fluorescence im-
ages of human paraffin-embedded sections
stained with RCBTB1 antibody (1:100, Ab-
cam) (C) or negative control (D). Human
RCBTB1 also localized to the inner retina;
the strongest signals were detected in the
nerve fiber layer. Sections were counter-
stained with DAPI (blue) and are displayed
as split images.
Immunohistochemistry was performed
as previously described.27 Asterisks mark
autofluorescence of photoreceptor outer
segments. Scale bars represent 100 mm.
Abbreviations are as follows: OS, outer
segment; IS, inner segment; ONL, outer
nuclear layer; OPL, outer plexiform layer;
INL, inner nuclear layer; IPL, inner plexi-
form layer; GCL, ganglion cell layer; and
NFL, nerve fiber layer.
NFE2L2 is crucial for protecting and preserving retinal

health.37–40 The stress response mediated by CRL3 and

NFE2L2 is also important for other organs, such as the thy-

roid (affected in families F1, F3, and F4) and the ovaries

(affected in family F1). The thyroid in particular requires a

stringent regulation of the production and removal of reac-

tive oxygen species in the context of normal hormogenesis

and thyroid gland growth.41,42 Interestingly, a germline

loss-of-function mutation in KEAP1 (kelch like ECH associ-

ated protein 1 [MIM: 606016]), encoding a CUL3 substrate

adaptor that negatively regulates NFE2L2, has been associ-

ated with multinodular goiter.43 In ovarian cells, NFE2L2

is an essential sensor and regulator of chemical homeosta-

sis. NFE2L2-null mice display accelerated ovarian failure af-

ter treatment with an ovarian toxicant, and the lack of

NFE2L2 results in accelerated ovarian aging.44,45

Here, we have demonstrated co-expression of CUL3

(cullin 3 [MIM: 603136]) and RCBTB1 in the human retina

andRPEandco-expressionofCul3 andRcbtb1 in themurine

retina, RPE, and ovary (Figure S6). In addition, CUL3 was

found in the human retina (faint) and the murine retina,

ovary, and thyroid (Figure S9). In order to assess the molec-

ular consequences of RCBTB1mutations on the CRL3 com-

plex and the NFE2L2 pathway, we analyzed the mRNA

expression of CUL3 and RBX1 (ring-box 1 [MIM: 603814])

(encoding two components of the CUL3 complex),

UBE2E3 (ubiquitin conjugating enzyme E2 E3 [MIM:

604151]; encoding the protein interacting with RCBTB1),

NFE2L2 (nuclear factor, erythroid 2 like 2 [MIM: 600492]),

and a selection of 21 NFE2L2 target genes (Table S7).46,47

Because RCBTB1 is ubiquitously expressed, this analysis

was performed on total RNA extracted from peripheral-

blood mononuclear cells from two affected individuals

from F1 (V:1 and V:2) and six healthy control individuals.
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Interestingly, we observed significantly lower expression

in affected individuals than in control individuals for

CUL3, NFE2L2, and three NFE2L2 target genes: RXRA (reti-

noid X receptor alpha [MIM: 180245]), IDH1 (isocitrate de-

hydrogenase [NADP(þ)] 1, cytosolic [MIM: 147700]), and

SLC25A25 (solute carrier family 25 member 25 [MIM:

608745]) (Figure 6 and Table S8). The decreased expression

of CUL3 and NFE2L2 can be explained by autoregulatory

feedback loops. NFE2L2 is known to positively regulate

the expression of CUL3 in order to control its own degrada-

tion.48 In addition, NFE2L2 is able to autoregulate its own

expression.49 Apart from CUL3 and NFE2L2, some of the

NFE2L2 target genes are interesting with respect to the sys-

tems affected in the families with RCBTB1 mutations. For

example, retinoid X receptor alpha (RXRalpha), encoded

by RXRA, is known to be present in the rod inner segment

layer, and activationof RXRsprevents photoreceptor oxida-

tive stress-induced apoptosis.50,51 In addition, RXRs form

heterodimers with thyroid hormone receptor and can co-

regulate response elements.52 IDH1 is highly expressed in

the retina,53 and IDH1 mutations occur in thyroid can-

cer.54 The downregulation of only a limited number of the

selected NFE2L2 target genes could be related to the source

of the material and/or the absence of oxidative stress at the

moment of RNA extraction.

In addition to regulating NFE2L2, RCBTB1 might exert

other functions as well. Ubiquitination plays an important

role in retinal development, modulation of the visual

cycle, and removal of aberrant or misfolded proteins.55

Pathological accumulation and aggregation of proteins

escaping or saturating proteasome degradation is a known

iRD disease mechanism.56,57 This hypothesis requires

further studies, however, because RCBTB1 substrates are

yet to be identified.
, 2016
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Figure 6. Expression Analysis of NFE2L2,
CUL3, and Four NRF2 Target Genes
The expression of NFE2L2, CUL3, RXRA,
SLC25A25, and IDH1wassignificantly lower
intwoaffected individuals (V:1andV:2from
F1) than in six healthy control individuals
(respective p values are 0.001, 0.005, 0.001,
0.026, and 0.002). For EPHX1, the observed
decrease was not significant (p value of
0.076). qPCR expression analysis was per-
formed as previously described.25 Error bars
represent the SE of the relative quantities.
So far, only a few genes in which mutations cause iRD

are known to play a role in ubiquitination. Mutations

in KLHL7 (kelch like family member 7 [MIM: 611119]),

encoding a CUL3 substrate adaptor, cause autosomal-

dominant RP by attenuating ubiquitin ligase activity.58,59

A second example is TOPORS (TOP1 binding arginine/

serine rich protein [MIM: 609507]), mutations in which

underlie autosomal-dominant RP as well. TOPORS was

initially characterized as both a ubiquitin and a SUMO-1

E3 ligase.60,61 Interestingly, TOPORS is also a cilia-centro-

somal protein implicated in ciliary protein trafficking.62

This is in line with recent studies linking several ubiquiti-

nation components with ciliogenesis.63,64 Mutations in

ubiquitously expressed genes with a role in ciliary, lyso-

somal, or metabolic pathways, for instance, are increas-

ingly described in both isolated and syndromic iRD

(RetNet). Mutations in such genes cover a broad spectrum

ranging from hypomorphic to null alleles. Depending on

the combination of alleles, phenotypes can vary from

mild (isolated iRD) to severe (syndromic iRD). In the case

of RCBTB1, we hypothesize that the identified missense

mutations affect specific functions of the protein and/or

distinct protein-protein interactions and thereby impair

one or multiple organ systems.

Understanding the pathogenetic mechanism of iRD

mutations in genes acting in ubiquitination and down-

stream NFE2L2 regulation is important in view of thera-

peutic developments. Local AAV-mediated overexpression

of NFE2L2 was recently put forward as a strategy for pro-

longing cone survival in three RP models caused by muta-

tions in two different genes (Pde6b and Rho).65 In many

iRDs, cone loss is secondary to rod degeneration andmight

be, at least in part, correlated with oxidative stress resulting

from massive rod death. Generic, antioxidant gene thera-

pies such as NFE2L2 overexpression would be much

cheaper and easier to implement than gene-specific

augmentation therapies.66

In conclusion, we have identified RCBTB1mutations as a

cause of autosomal-recessive iRD with or without extra-
The American Journal of Human G
ocular manifestations in the thyroid,

ovary, and inner ear. This study has

linked autosomal-recessive iRD with

impaired ubiquitination and NFE2L2

regulation, an emerging pathway that
regulates oxidative stress in the retina and is amenable to

gene therapy.
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et al. (2015). A detailed clinical and molecular survey of sub-

jects with nonsyndromic USH2A retinopathy reveals an allelic

hierarchy of disease-causing variants. Eur. J. Hum. Genet. 23,

1318–1327.

4. Roosing, S., van den Born, L.I., Sangermano, R., Banfi, S., Koe-

nekoop, R.K., Zonneveld-Vrieling, M.N., Klaver, C.C., van

Lith-Verhoeven, J.J., Cremers, F.P., den Hollander, A.I., and

Hoyng, C.B. (2015). Mutations in MFSD8, encoding a lyso-

somal membrane protein, are associated with nonsyndromic

autosomal recessive macular dystrophy. Ophthalmology

122, 170–179.

5. Xu, M., Yamada, T., Sun, Z., Eblimit, A., Lopez, I., Wang, F.,

Manya, H., Xu, S., Zhao, L., Li, Y., et al. (2016). Mutations in

POMGNT1 cause non-syndromic retinitis pigmentosa. Hum.

Mol. Genet. 25, 1479–1488.

6. De Leeneer, K., Hellemans, J., Steyaert, W., Lefever, S., Ver-

eecke, I., Debals, E., Crombez, B., Baetens, M., Van Heet-

velde, M., Coppieters, F., et al. (2015). Flexible, scalable,

and efficient targeted resequencing on a benchtop sequencer

for variant detection in clinical practice. Hum. Mutat. 36,

379–387.

7. Mabuchi, H., Fujii, H., Calin, G., Alder, H., Negrini, M., Ras-

senti, L., Kipps, T.J., Bullrich, F., and Croce, C.M. (2001). Clon-

ing and characterization of CLLD6, CLLD7, and CLLD8, novel

candidate genes for leukemogenesis at chromosome 13q14, a

region commonly deleted in B-cell chronic lymphocytic leu-

kemia. Cancer Res. 61, 2870–2877.
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