188 research outputs found

    Intra-aortic Counterpulsation Therapy allowing the Diagnosis of a Pheochromocytoma

    Get PDF

    Investigation of mechanisms of bendiocarb resistance in Anopheles gambiae populations from the city of Yaoundé, Cameroon

    Get PDF
    BACKGROUND Resistance to the carbamate insecticide bendiocarb is emerging in Anopheles gambiae populations from the city of Yaoundé in Cameroon. However, the molecular basis of this resistance remains uncharacterized. The present study objective is to investigate mechanisms promoting resistance to bendiocarb in An. gambiae populations from Yaoundé. METHODS The level of susceptibility of An. gambiae s.l. to bendiocarb 0.1 % was assessed from 2010 to 2013 using bioassays. Mosquitoes resistant to bendiocarb, unexposed and susceptible mosquitoes were screened for the presence of the Ace-1(R) mutation using TaqMan assays. Microarray analyses were performed to assess the pattern of genes differentially expressed between resistant, unexposed and susceptible. RESULTS Bendiocarb resistance was more prevalent in mosquitoes originating from cultivated sites compared to those from polluted and unpolluted sites. Both An. gambiae and Anopheles coluzzii were found to display resistance to bendiocarb. No G119S mutation was detected suggesting that resistance was mainly metabolic. Microarray analysis revealed the over-expression of several cytochrome P450 s genes including cyp6z3, cyp6z1, cyp12f2, cyp6m3 and cyp6p4. Gene ontology (GO) enrichment analysis supported the detoxification role of cytochrome P450 s with several GO terms associated with P450 activity significantly enriched in resistant samples. Other detoxification genes included UDP-glucosyl transferases, glutathione-S transferases and ABC transporters. CONCLUSION The study highlights the probable implication of metabolic mechanisms in bendiocarb resistance in An. gambiae populations from Yaoundé and stresses the need for further studies leading to functional validation of detoxification genes involved in this resistance

    Plasmodium falciparum Produce Lower Infection Intensities in Local versus Foreign Anopheles gambiae Populations

    Get PDF
    Both Plasmodium falciparum and Anopheles gambiae show great diversity in Africa, in their own genetic makeup and population dynamics. The genetics of the individual mosquito and parasite are known to play a role in determining the outcome of infection in the vector, but whether differences in infection phenotype vary between populations remains to be investigated. Here we established two A. gambiae s.s. M molecular form colonies from Cameroon and Burkina Faso, representing a local and a foreign population for each of the geographical sites. Experimental infections of both colonies were conducted in Cameroon and Burkina Faso using local wild P. falciparum, giving a sympatric and allopatric vector-parasite combination in each site. Infection phenotype was determined in terms of oocyst prevalence and intensity for at least nine infections for each vector-parasite combination. Sympatric infections were found to produce 25% fewer oocysts per midgut than allopatric infections, while prevalence was not affected by local/foreign interactions. The reduction in oocyst numbers in sympatric couples may be the result of evolutionary processes where the mosquito populations have locally adapted to their parasite populations. Future research on vector-parasite interactions must take into account the geographic scale of adaptation revealed here by conducting experiments in natural sympatric populations to give epidemiologically meaningful results

    Midgut microbiota of the malaria mosquito vector Anopheles gambiae and Interactions with plasmodium falciparum Infection

    Get PDF
    The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.Institut de Recherche pour le Developpement (IRD); French Agence Nationale pour la Recherche [ANR-11-BSV7-009-01]; European Community [242095, 223601]info:eu-repo/semantics/publishedVersio

    Development and application of an electronic treatment register: a system for enumerating populations and monitoring treatment during mass drug administration.

    Get PDF
    We developed an electronic treatment register for the DeWorm3 Project, a cluster-randomised, controlled trial in Benin, India, and Malawi testing the feasibility of interrupting transmission of soil-transmitted helminths through community-wide mass drug administration. The electronic treatment register was designed in xlsform, deployed via the SurveyCTO mobile data collection platform, and implemented on smartphones running the Android operating system. The versatile system enables collection of census and treatment status information, facilitates data aggregation and visualisation, and permits real-time feedback loops during implementation of mass drug administration. Here we describe the system's design and use within the DeWorm3 Project and key features, and by sharing the register here, we hope our readers will further explore its use within their research and disease-control activities

    Analysis of Mitochondrial DNA Sequences in Childhood Encephalomyopathies Reveals New Disease-Associated Variants

    Get PDF
    BACKGROUND: Mitochondrial encephalomyopathies are a heterogeneous group of clinical disorders generally caused due to mutations in either mitochondrial DNA (mtDNA) or nuclear genes encoding oxidative phosphorylation (OXPHOS). We analyzed the mtDNA sequences from a group of 23 pediatric patients with clinical and morphological features of mitochondrial encephalopathies and tried to establish a relationship of identified variants with the disease. METHODOLOGY/PRINCIPLE FINDINGS: Complete mitochondrial genomes were amplified by PCR and sequenced by automated DNA sequencing. Sequencing data was analyzed by SeqScape software and also confirmed by BLASTn program. Nucleotide sequences were compared with the revised Cambridge reference sequence (CRS) and sequences present in mitochondrial databases. The data obtained shows that a number of known and novel mtDNA variants were associated with the disease. Most of the non-synonymous variants were heteroplasmic (A4136G, A9194G and T11916A) suggesting their possibility of being pathogenic in nature. Some of the missense variants although homoplasmic were showing changes in highly conserved amino acids (T3394C, T3866C, and G9804A) and were previously identified with diseased conditions. Similarly, two other variants found in tRNA genes (G5783A and C8309T) could alter the secondary structure of Cys-tRNA and Lys-tRNA. Most of the variants occurred in single cases; however, a few occurred in more than one case (e.g. G5783A and A10149T). CONCLUSIONS AND SIGNIFICANCE: The mtDNA variants identified in this study could be the possible cause of mitochondrial encephalomyopathies with childhood onset in the patient group. Our study further strengthens the pathogenic score of known variants previously reported as provisionally pathogenic in mitochondrial diseases. The novel variants found in the present study can be potential candidates for further investigations to establish the relationship between their incidence and role in expressing the disease phenotype. This study will be useful in genetic diagnosis and counseling of mitochondrial diseases in India as well as worldwide

    Conserved Mosquito/Parasite Interactions Affect Development of Plasmodium falciparum in Africa

    Get PDF
    In much of sub-Saharan Africa, the mosquito Anopheles gambiae is the main vector of the major human malaria parasite, Plasmodium falciparum. Convenient laboratory studies have identified mosquito genes that affect positively or negatively the developmental cycle of the model rodent parasite, P. berghei. Here, we use transcription profiling and reverse genetics to explore whether five disparate mosquito gene regulators of P. berghei development are also pertinent to A. gambiae/P. falciparum interactions in semi-natural conditions, using field isolates of this parasite and geographically related mosquitoes. We detected broadly similar albeit not identical transcriptional responses of these genes to the two parasite species. Gene silencing established that two genes affect similarly both parasites: infections are hindered by the intracellular local activator of actin cytoskeleton dynamics, WASP, but promoted by the hemolymph lipid transporter, ApoII/I. Since P. berghei is not a natural parasite of A. gambiae, these data suggest that the effects of these genes have not been drastically altered by constant interaction and co-evolution of A. gambiae and P. falciparum; this conclusion allowed us to investigate further the mode of action of these two genes in the laboratory model system using a suite of genetic tools and infection assays. We showed that both genes act at the level of midgut invasion during the parasite's developmental transition from ookinete to oocyst. ApoII/I also affects the early stages of oocyst development. These are the first mosquito genes whose significant effects on P. falciparum field isolates have been established by direct experimentation. Importantly, they validate for semi-field human malaria transmission the concept of parasite antagonists and agonists

    Patterns of Selection in Anti-Malarial Immune Genes in Malaria Vectors: Evidence for Adaptive Evolution in LRIM1 in Anopheles arabiensis

    Get PDF
    Co-evolution between Plasmodium species and its vectors may result in adaptive changes in genes that are crucial components of the vector's defense against the pathogen. By analyzing which genes show evidence of positive selection in malaria vectors, but not in closely related non-vectors, we can identify genes that are crucial for the mosquito's resistance against Plasmodium.We investigated genetic variation of three anti-malarial genes; CEC1, GNBP-B1 and LRIM1, in both vector and non-vector species of the Anopheles gambiae complex. Whereas little protein differentiation was observed between species in CEC1 and GNBP-B1, McDonald-Kreitman and maximum likelihood tests of positive selection show that LRIM1 underwent adaptive evolution in a primary malaria vector; An. arabiensis. In particular, two adjacent codons show clear signs of adaptation by having accumulated three out of four replacement substitutions. Furthermore, our data indicate that this LRIM1 allele has introgressed from An. arabiensis into the other main malaria vector An. gambiae.Although no evidence exists to link the adaptation of LRIM1 to P. falciparum infection, an adaptive response of a known anti-malarial gene in a primary malaria vector is intriguing, and may suggest that this gene could play a role in Plasmodium resistance in An. arabiensis. If so, our data also predicts that LRIM1 alleles in An. gambiae vary in their level of resistance against P. falciparum

    Larviciding intervention targeting malaria vectors also affects Culex mosquito distribution in the city of Yaoundé, Cameroon

    Get PDF
    Although Culex species are considered to be equally affected by control measures targeting malaria vectors, there is still not enough evidence of the impact of interventions such as larviciding on the distribution of these mosquito species. The present study assessed the impact of a larviciding trial targeting malaria vectors on Culex mosquito species in the city of Yaoundé, Cameroon. A cluster randomized trial comparing 13 treated clusters and 13 untreated clusters was implemented. Data were collected at baseline and during the larviciding intervention, from March 2017 to November 2020. The microbial larvicide VectoMax G was applied once every 2 weeks in the intervention areas. Adult mosquitoes were collected using CDC light traps in both intervention and non-intervention areas and compared between arms. Globally, larviciding intervention was associated with 69% reduction in aquatic habitats with Culex larvae and 36.65% reduction of adult Culex densities in houses. Adult Culex densities were reduced both indoors (35.26%) and outdoors (42.37%). No change in the composition of Culex species was recorded. The study suggests a high impact of larviciding on Culex mosquito species distribution. The impact of the intervention can be improved if typical Culex breeding habitats including pit latrines are targeted
    corecore