283 research outputs found

    Investigation of mechanisms of bendiocarb resistance in Anopheles gambiae populations from the city of Yaoundé, Cameroon

    Get PDF
    BACKGROUND Resistance to the carbamate insecticide bendiocarb is emerging in Anopheles gambiae populations from the city of Yaoundé in Cameroon. However, the molecular basis of this resistance remains uncharacterized. The present study objective is to investigate mechanisms promoting resistance to bendiocarb in An. gambiae populations from Yaoundé. METHODS The level of susceptibility of An. gambiae s.l. to bendiocarb 0.1 % was assessed from 2010 to 2013 using bioassays. Mosquitoes resistant to bendiocarb, unexposed and susceptible mosquitoes were screened for the presence of the Ace-1(R) mutation using TaqMan assays. Microarray analyses were performed to assess the pattern of genes differentially expressed between resistant, unexposed and susceptible. RESULTS Bendiocarb resistance was more prevalent in mosquitoes originating from cultivated sites compared to those from polluted and unpolluted sites. Both An. gambiae and Anopheles coluzzii were found to display resistance to bendiocarb. No G119S mutation was detected suggesting that resistance was mainly metabolic. Microarray analysis revealed the over-expression of several cytochrome P450 s genes including cyp6z3, cyp6z1, cyp12f2, cyp6m3 and cyp6p4. Gene ontology (GO) enrichment analysis supported the detoxification role of cytochrome P450 s with several GO terms associated with P450 activity significantly enriched in resistant samples. Other detoxification genes included UDP-glucosyl transferases, glutathione-S transferases and ABC transporters. CONCLUSION The study highlights the probable implication of metabolic mechanisms in bendiocarb resistance in An. gambiae populations from Yaoundé and stresses the need for further studies leading to functional validation of detoxification genes involved in this resistance

    Midgut microbiota of the malaria mosquito vector Anopheles gambiae and Interactions with plasmodium falciparum Infection

    Get PDF
    The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.Institut de Recherche pour le Developpement (IRD); French Agence Nationale pour la Recherche [ANR-11-BSV7-009-01]; European Community [242095, 223601]info:eu-repo/semantics/publishedVersio

    Intra-aortic Counterpulsation Therapy allowing the Diagnosis of a Pheochromocytoma

    Get PDF

    Plasmodium falciparum Produce Lower Infection Intensities in Local versus Foreign Anopheles gambiae Populations

    Get PDF
    Both Plasmodium falciparum and Anopheles gambiae show great diversity in Africa, in their own genetic makeup and population dynamics. The genetics of the individual mosquito and parasite are known to play a role in determining the outcome of infection in the vector, but whether differences in infection phenotype vary between populations remains to be investigated. Here we established two A. gambiae s.s. M molecular form colonies from Cameroon and Burkina Faso, representing a local and a foreign population for each of the geographical sites. Experimental infections of both colonies were conducted in Cameroon and Burkina Faso using local wild P. falciparum, giving a sympatric and allopatric vector-parasite combination in each site. Infection phenotype was determined in terms of oocyst prevalence and intensity for at least nine infections for each vector-parasite combination. Sympatric infections were found to produce 25% fewer oocysts per midgut than allopatric infections, while prevalence was not affected by local/foreign interactions. The reduction in oocyst numbers in sympatric couples may be the result of evolutionary processes where the mosquito populations have locally adapted to their parasite populations. Future research on vector-parasite interactions must take into account the geographic scale of adaptation revealed here by conducting experiments in natural sympatric populations to give epidemiologically meaningful results

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Malaria prevention in the city of Yaoundé: knowledge and practices of urban dwellers

    Get PDF
    BackgroundMalaria prevention in Cameroon mainly relies on the use of ITNs. Although several free distribution campaigns of treated nets have been conducted across the country, bed net usage remains very low. A household survey was conducted to assess knowledge of the population and practices affecting treated net usage in the city of Yaoundé.MethodsA community-based descriptive cross-sectional survey was conducted in January 2017 in 32 districts of the city of Yaoundé. Parents (household head, spouse or an elder representative) who consented to the study, were interviewed using a structured pre-tested questionnaire. Interviews were conducted in French or English. A questionnaire consisting of 22 questions was administered to know (i) people’s knowledge and attitude on preventive measures; and, (ii) attitudes concerning the treatment of malaria and estimated amount spent for malaria prevention and treatment. ResultsA total of 1,643 household heads were interviewed. Over 94% of people interviewed associated malaria transmission to mosquito bites. The main methods used against mosquito bites were: treated bed nets (94%; n=1,526) and insecticide spray or coils (32.2%; n=523). The majority of people interviewed reported using bed nets mainly to prevent from mosquito bites (84.4%, n=1,257), rather than for malaria prevention (47.3%). Knowledge and attitude analysis revealed that people with university or secondary level of education have better knowledge of malaria, prevention and treatment measures compared to those with the primary level (OR=7.03; P&lt;0.001). Also, wealthy households were more aware of good practices concerning malaria prevention and treatment compared to poor ones. In the majority of districts of Yaoundé, over 50% of people interviewed per district, had good knowledge of malaria and prevention measures but less than 50% applied good practices concerning malaria treatment and prevention. The amount spent annually by a household for vector control was CFAF 11,589±1,133 (US21.87±2.14)andCFAF66,403±4,012(US21.87±2.14) and CFAF 66,403±4,012 (US125.29±7.57) for malaria treatment.ConclusionThe study indicated that, despite good knowledge of malaria and prevention measures, few people apply good practices. More sensitization needs to be done to improve adherence to good practices concerning malaria prevention and treatment.</p

    Development and application of an electronic treatment register: a system for enumerating populations and monitoring treatment during mass drug administration.

    Get PDF
    We developed an electronic treatment register for the DeWorm3 Project, a cluster-randomised, controlled trial in Benin, India, and Malawi testing the feasibility of interrupting transmission of soil-transmitted helminths through community-wide mass drug administration. The electronic treatment register was designed in xlsform, deployed via the SurveyCTO mobile data collection platform, and implemented on smartphones running the Android operating system. The versatile system enables collection of census and treatment status information, facilitates data aggregation and visualisation, and permits real-time feedback loops during implementation of mass drug administration. Here we describe the system's design and use within the DeWorm3 Project and key features, and by sharing the register here, we hope our readers will further explore its use within their research and disease-control activities

    Analysis of Mitochondrial DNA Sequences in Childhood Encephalomyopathies Reveals New Disease-Associated Variants

    Get PDF
    BACKGROUND: Mitochondrial encephalomyopathies are a heterogeneous group of clinical disorders generally caused due to mutations in either mitochondrial DNA (mtDNA) or nuclear genes encoding oxidative phosphorylation (OXPHOS). We analyzed the mtDNA sequences from a group of 23 pediatric patients with clinical and morphological features of mitochondrial encephalopathies and tried to establish a relationship of identified variants with the disease. METHODOLOGY/PRINCIPLE FINDINGS: Complete mitochondrial genomes were amplified by PCR and sequenced by automated DNA sequencing. Sequencing data was analyzed by SeqScape software and also confirmed by BLASTn program. Nucleotide sequences were compared with the revised Cambridge reference sequence (CRS) and sequences present in mitochondrial databases. The data obtained shows that a number of known and novel mtDNA variants were associated with the disease. Most of the non-synonymous variants were heteroplasmic (A4136G, A9194G and T11916A) suggesting their possibility of being pathogenic in nature. Some of the missense variants although homoplasmic were showing changes in highly conserved amino acids (T3394C, T3866C, and G9804A) and were previously identified with diseased conditions. Similarly, two other variants found in tRNA genes (G5783A and C8309T) could alter the secondary structure of Cys-tRNA and Lys-tRNA. Most of the variants occurred in single cases; however, a few occurred in more than one case (e.g. G5783A and A10149T). CONCLUSIONS AND SIGNIFICANCE: The mtDNA variants identified in this study could be the possible cause of mitochondrial encephalomyopathies with childhood onset in the patient group. Our study further strengthens the pathogenic score of known variants previously reported as provisionally pathogenic in mitochondrial diseases. The novel variants found in the present study can be potential candidates for further investigations to establish the relationship between their incidence and role in expressing the disease phenotype. This study will be useful in genetic diagnosis and counseling of mitochondrial diseases in India as well as worldwide

    Chikungunya (Togaviridae) and dengue 2 (Flaviviridae) viruses detected from Aedes aegypti mosquitoes in Burkina Faso by qRT-PCR technique: preliminary results and perspective for molecular characterisation of arboviruses circulation in vector populations

    Get PDF
    In 2016, an entomological study was carried out in a railway transect between Banfora and Ouagadougou, Burkina Faso. The objective was to assess the risk factors of arbovirus outbreaks, including vector-borne infection status within representative regions of the country. Aedes aegypti mosquitoes were collected at larval stage from their natural rearing habitats in four study sites when estimating the main larval index, then reared until adult stage and kept in RNAlater for detection of arbovirus RNA. In the lab, mosquito samples were tested for dengue virus (DENV) and Chikungunya virus (CHIKV) using a real-time qRT-PCR stage. A DENV-2 positive pool was detected in Ouagadougou with a minimum infection rate (MIR) of 16.67 and other 6 CHIKV positive pools with a MIR of 66.67 in Ouagadougou, Banfora and Boromo. This qRT-PCR approach, if validated with various samples also comprising wild blood-fed adults, is a useful tool for arbovirus circulation and disease monitoring in Burkina Faso

    Patterns of Selection in Anti-Malarial Immune Genes in Malaria Vectors: Evidence for Adaptive Evolution in LRIM1 in Anopheles arabiensis

    Get PDF
    Co-evolution between Plasmodium species and its vectors may result in adaptive changes in genes that are crucial components of the vector's defense against the pathogen. By analyzing which genes show evidence of positive selection in malaria vectors, but not in closely related non-vectors, we can identify genes that are crucial for the mosquito's resistance against Plasmodium.We investigated genetic variation of three anti-malarial genes; CEC1, GNBP-B1 and LRIM1, in both vector and non-vector species of the Anopheles gambiae complex. Whereas little protein differentiation was observed between species in CEC1 and GNBP-B1, McDonald-Kreitman and maximum likelihood tests of positive selection show that LRIM1 underwent adaptive evolution in a primary malaria vector; An. arabiensis. In particular, two adjacent codons show clear signs of adaptation by having accumulated three out of four replacement substitutions. Furthermore, our data indicate that this LRIM1 allele has introgressed from An. arabiensis into the other main malaria vector An. gambiae.Although no evidence exists to link the adaptation of LRIM1 to P. falciparum infection, an adaptive response of a known anti-malarial gene in a primary malaria vector is intriguing, and may suggest that this gene could play a role in Plasmodium resistance in An. arabiensis. If so, our data also predicts that LRIM1 alleles in An. gambiae vary in their level of resistance against P. falciparum
    corecore