212 research outputs found
Walks4work: Rationale and study design to investigate walking at lunchtime in the workplace setting
Background: Following recruitment of a private sector company, an 8week lunchtime walking intervention was implemented to examine the effect of the intervention on modifiable cardiovascular disease risk factors, and further to see if walking environment had any further effect on the cardiovascular disease risk factors. Methods. For phase 1 of the study participants were divided into three groups, two lunchtime walking intervention groups to walk around either an urban or natural environment twice a week during their lunch break over an 8week period. The third group was a waiting-list control who would be invited to join the walking groups after phase 1. In phase 2 all participants were encouraged to walk during their lunch break on self-selecting routes. Health checks were completed at baseline, end of phase 1 and end of phase 2 in order to measure the impact of the intervention on cardiovascular disease risk. The primary outcome variables of heart rate and heart rate variability were measured to assess autonomic function associated with cardiovascular disease. Secondary outcome variables (Body mass index, blood pressure, fitness, autonomic response to a stressor) related to cardiovascular disease were also measured. The efficacy of the intervention in increasing physical activity was objectively monitored throughout the 8-weeks using an accelerometer device. Discussion. The results of this study will help in developing interventions with low researcher input with high participant output that may be implemented in the workplace. If effective, this study will highlight the contribution that natural environments can make in the reduction of modifiable cardiovascular disease risk factors within the workplace. © 2012 Brown et al.; licensee BioMed Central Ltd
Conduit artery structure and function in lowlanders and native highlanders: relationships with oxidative stress and role of sympathoexcitation
Research detailing the normal vascular adaptions to high altitude is minimal and
often confounded by pathology (e.g. chronic mountain sickness) and methodological issues.
We examined vascular function and structure in: (1) healthy lowlanders during acute hypoxia and prolonged ( 2 weeks) exposure to high altitude, and (2) high-altitude natives at 5050 m (highlanders). In 12 healthy lowlanders (aged 32 ± 7 years) and 12 highlanders(Sherpa; 33 ± 14 years) we assessed brachial endothelium-dependent flow-mediated dilatation(FMD), endothelium-independent dilatation (via glyceryl trinitrate; GTN), common carotid intima–media thickness (CIMT) and diameter (ultrasound), and arterial stiffness via pulse wave velocity (PWV; applanation tonometry). Cephalic venous biomarkers of free radical-mediated lipid peroxidation (lipid hydroperoxides, LOOH), nitrite (NO2 –) and lipid soluble antioxidants were also obtained at rest. In lowlanders, measurements were performed at sea level (334 m) and between days 3–4 (acute high altitude) and 12–14 (chronic high altitude) following arrival to 5050 m. Highlanders were assessed once at 5050 m. Compared with sea level, acute high altitude reduced lowlanders’ FMD (7.9 ± 0.4 vs. 6.8 ± 0.4%; P = 0.004) and GTN-induced dilatation (16.6 ± 0.9 vs. 14.5 ± 0.8%; P = 0.006), and raised central PWV (6.0 ± 0.2 vs. 6.6 ± 0.3 m s−1; P = 0.001). These changes persisted at days 12–14, and after allometricallyscaling FMD to adjust for altered baseline diameter. Compared to lowlanders at sea level and high altitude, highlanders had a lower carotid wall:lumen ratio ( 19%, P 0.04), attributable to a narrower CIMT and wider lumen. Although both LOOH and NO2 – increased with high altitude in lowlanders, only LOOH correlated with the reduction in GTN-induced dilatation
evident during acute (n = 11, r=−0.53) and chronic (n = 7, r=−0.69; P 0.01) exposure to 5050 m. In a follow-up, placebo-controlled experiment (n=11 healthy lowlanders) conducted in a normobaric hypoxic chamber (inspiredO2 fraction (FIO2 )=0.11; 6 h), a sustained reduction in FMD was evident within 1 h of hypoxic exposure when compared to normoxic baseline (5.7±1.6 vs. 8.0 ±1.3%; P < 0.01); this decline in FMD was largely reversed following α1-adrenoreceptor blockade. In conclusion, high-altitude exposure in lowlanders caused persistent impairment in vascular function, which was mediated partially via oxidative stress and sympathoexcitation. Although a lifetime of high-altitude exposure neither intensifies nor attenuates the impairments seen with short-term exposure, chronic high-altitude exposure appears to be associated with arterial remodelling
Cerebrovascular carbon dioxide reactivity and flow-mediated dilation in young healthy South Asian and Caucasian European men
Copyright © 2020 the American Physiological Society South Asians living in the United Kingdom have a 1.5-fold greater risk of ischemic stroke than the general population. Impaired cerebrovascular carbon dioxide (CO2) reactivity is an independent predictor of ischemic stroke and cardiovascular mortality. We sought to test the hypothesis that cerebrovascular CO2 reactivity is reduced in South Asians. Middle cerebral artery blood velocity (MCA Vm) was measured at rest and during stepwise changes in end-tidal partial pressure of CO2 (PETCO2) in South Asian (n = 16) and Caucasian European (n = 18) men who were young (~20 yr), healthy, and living in the United Kingdom. Incremental hypercapnia was delivered via the open-circuit steady-state method, with stages of 4 and 7% CO2 (~21% oxygen, nitrogen balanced). Cerebrovascular CO2 reactivity was calculated as the change in MCA Vm relative to the change in PETCO2. MCA Vm was not different in South Asians [59 (9) cm/s, mean (standard deviation)] and Caucasian Europeans [61 (12) cm/s; P > 0.05]. Similarly, cerebrovascular CO2 reactivity was not different between the groups [South Asian 2.53 (0.76) vs. Caucasian European 2.61 (0.81) cm·s-1·mmHg-1; P > 0.05]. Brachial artery flow-mediated dilation was lower in South Asians [5.48 (2.94)%] compared with Caucasian Europeans [7.41 (2.28)%; P 0.05). Flow-mediated dilation was not correlated with cerebrovascular CO2 reactivity measures. In summary, cerebrovascular CO2 reactivity and flow-mediated dilation corrected for shear rate are preserved in young healthy South Asian men living in the United Kingdom. NEW & NOTEWORTHY Previous reports have identified an increased risk of ischemic stroke and peripheral endothelial dysfunction in South Asians compared with Caucasian Europeans. The main finding of this study is that cerebrovascular carbon dioxide reactivity (an independent predictor of ischemic stroke) is not different in healthy young South Asian and Caucasian European men
Population genomics of marine zooplankton
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that
distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of
population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has
slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated
species and diversity of genomic architecture, including highly-replicated genomes of many
crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is
transforming our ability to analyze population genetics and connectivity of marine zooplankton, and
providing new understanding and different answers than earlier analyses, which typically used
mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that,
despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic
populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population
connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are
critically needed to allow further examination of micro-evolution and local adaptation, including
identification of genes that show evidence of selection. These new tools will also enable further
examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to
discriminate genetic “noise” in large and patchy populations from local adaptation to environmental
conditions and change.Support was provided by the
US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to
IS and MC was provided by Nord University (Norway)
A labeled Clinical-MRI dataset of Nigerian brains
We describe a Magnetic Resonance Imaging (MRI) dataset from individuals fromthe African nation of Nigeria. The dataset contains pseudonymized structuralMRI (T1w, T2w, FLAIR) data of clinical quality. The dataset contains data from36 images from healthy control subjects, 32 images from individuals diagnosedwith age-related dementia and 20 from individuals with Parkinson's disease.There is currently a paucity of data from the African continent. Given thepotential for Africa to contribute to the global neuroscience community, thisfirst MRI dataset represents both an opportunity and benchmark for futurestudies to share data from the African continent.<br
Integrated respiratory chemoreflex‐mediated regulation of cerebral blood flow in hypoxia: Implications for oxygen delivery and acute mountain sickness
Retrospective evaluation of the effect of carotid artery stenosis on cerebral oxygen saturation during off-pump coronary artery bypasses grafting in adult patients
Trigger factors for rupture of intracranial aneurysms in relation to patient and aneurysm characteristics
- …
